首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
After the appearance of “Etudes sur le vin” by Pasteur, in enology lactic acid bacteria have been considered as deteriorating agents for more than 50 years. About 1920, Ferré in Burgundy and Ribéreau-Gayon in Bordeaux demonstrated the enological importance of the transformation of malic to lactic acid. This notion is now generally accepted in most vinicultural areas. Malolactic fermentation is encouraged, especially for red wines, for two reasons: a) it eliminates the taste of malic acid and lowers the acidity of the wine, b) it assures the biological stability of wines conserved with a minimum of sulphurous anhydride. In traditional vinification, malolactic fermentation is the result of bacterial growth. It is spontaneous, that means induced by the endogenous lactic acid bacteria of grapes and winery equipment. In the must, yeasts and bacteria develop simultaneously; in the antagonism between yeasts and bacteria the bacterial population is more often becoming dominant than being suppressed. The grapes are sulphited so that bacterial growth occurs only after complete exhaustion of sugars by the yeasts. Consequently, alteration of the wine, as a result of sugar fermentation by the bacteria, is prevented. In a well-controlled vinification lactic acid bacteria can complete their growth cycle in the wine. Wine, however, is a poor culture medium and the bacteria multiply under restricted nutritional, physical and chemical conditions. As a consequence, malolactic fermentation is difficult to control in practice, in spite of all the research done for more than 30 years. For a long time, one has tried to stimulate malolactic fermentation by inoculating wine with bacteria. Until now, the problem has been to determine the biomass of bacteria, sufficient for fermentation to take place as well as the quality required. The desired physiological state of the bacteria in the inoculum is also not known.  相似文献   

2.
Oenococcus oeni is often employed to perform the malolactic fermentation in wine production, while nonoenococcal lactic acid bacteria often contribute to wine spoilage. Two real-time PCR assays were developed to enumerate the total, and nonoenococcal, lactic acid bacterial populations in wine. Used together, these assays can assess the spoilage risk of juice or wine from lactic acid bacteria.  相似文献   

3.
During malolactic fermentation (MLF), lactic acid bacteria influence wine aroma and flavour by the production of volatile metabolites and the modification of aroma compounds derived from grapes and yeasts. The present study investigated the impact of different MLF inoculation strategies with two different Oenococcus oeni strains on cool climate Riesling wines and the volatile wine aroma profile. Four different timings were chosen for inoculation with bacteria to conduct MLF in a Riesling must/wine with a high acidity (pH 2.9–3.1). Treatments with simultaneous inoculation showed a reduced total fermentation time (alcoholic and malolactic) compared to the sequential inoculations. No negative impact of simultaneous alcoholic and malolactic fermentation on fermentation success and on the final wine volatile aroma composition was observed. Compared to sequential inoculation, wines with co-inoculation tended to have higher concentrations of ethyl and acetate esters, including acetic acid phenylethylester, acetic acid 3-methylbutylester, butyric acid ethylester, lactic acid ethylester and succinic acid diethylester. Results of this study provide some alternatives to diversify the number of wine styles by safely conducting MLF in low-pH, cool-climate white musts with potential high alcohol content.  相似文献   

4.
Oenococcus oeni is often employed to perform the malolactic fermentation in wine production, while nonoenococcal lactic acid bacteria often contribute to wine spoilage. Two real-time PCR assays were developed to enumerate the total, and nonoenococcal, lactic acid bacterial populations in wine. Used together, these assays can assess the spoilage risk of juice or wine from lactic acid bacteria.  相似文献   

5.
The polypeptide nisin (100 U/ml) prevented malolactic fermentation in wines by indigenous or intentionally added lactic acid bacteria. Nisin (100 U/ml)-resistant mutants of Leuconostoc oenos were obtained and used with nisin in wine to carry out a pure-culture malolactic fermentation in the presence or absence of other lactic acid bacteria. Nisin degradation by mutants was not observed, and residual nisin was detectable in wines 4 months after it was added. Results indicated that nisin or nisin with resistant bacterial starter cultures can be used to control malolactic fermentation in wines.  相似文献   

6.
Lactic acid bacteria in the quality improvement and depreciation of wine   总被引:36,自引:0,他引:36  
The winemaking process includes two main steps: lactic acid bacteria are responsible for the malolactic fermentation which follows the alcoholic fermentation by yeasts. Both types of microorganisms are present on grapes and on cellar equipment. Yeasts are better adapted to growth in grape must than lactic acid bacteria, so the alcoholic fermentation starts quickly. In must, up to ten lactic acid bacteria species can be identified. They belong to the Lactobacillus, Pediococcus, Leuconostoc and Oenococcus genera. Throughout alcoholic fermentation, a natural selection occurs and finally the dominant species is O. oeni, due to interactions between yeasts and bacteria and between bacteria themselves. After bacterial growth, when the population is over 106CFU/ml, malolactic transformation is the obvious change in wine composition. However, many other substrates can be metabolized. Some like remaining sugars and citric acid are always assimilated by lactic acid bacteri a, thus providing them with energy and carbon. Other substrates such as some amino acids may be used following pathways restricted to strains carrying the adequate enzymes. Some strains can also produce exopolysaccharides. All these transformations greatly influence the sensory and hygienic quality of wine. Malic acid transformation is encouraged because it induces deacidification. Diacetyl produced from citric acid is also helpful to some extent. Sensory analyses show that many other reactions change the aromas and make malolactic fermentation beneficial, but they are as yet unknown. On the contrary, an excess of acetic acid, the synthesis of glucane, biogenic amines and precursors of ethylcarbamate are undesirable. Fortunately, lactic acid bacteria normally multiply in dry wines; moreover some of these activities are not widespread. Moreover, the most striking trait of wine lactic acid bacteria is their capacity to adapt to a hostile environment. The mechanisms for this are not yet c ompletely elucidated . Molecular biology has provided some explanations for the behaviour and the metabolism of bacteria in wine. New tools are now available to detect the presence of desirable and undesirable strains. Even if much remains unknown, winemakers and oenologists can nowadays better control the process. By acting upon the diverse microflora and grape musts, they are more able to produce healthy and pleasant wines.  相似文献   

7.
Oenococcus oeni is an acidophilic member of the Leuconostoc branch of lactic acid bacteria indigenous to wine and similar environments. O. oeni is commonly responsible for the malolactic fermentation in wine and due to its positive contribution is frequently used as a starter culture to promote malolactic fermentation. In collaboration with the Lactic Acid Bacteria Genome Consortium the genome sequence of O. oeni PSU-1 has been determined. The complete genome is 1,780,517 nt with a GC content of 38%. 1701 ORFs could be predicted from the sequence of which 75% were functionally classified. Consistent with its classification as an obligately heterofermentative lactic acid bacterium the PSU-1 genome encodes all the enzymes for the phosphoketolase pathway. Moreover, genes related to flavor modification in wine, such as malolactic fermentation capacity and citrate utilization were readily identified. The completion of the O. oeni genome marks a significant new phase for wine-related research on lactic acid bacteria in which the physiology, genetic diversity and performance of O. oeni starter cultures can be more rigorously examined.  相似文献   

8.
Leuconostoc oenos and malolactic fermentation in wine: a review   总被引:1,自引:0,他引:1  
This review article summarizes the state of the art on Leuconostoc oenos, the bacteria responsible for malolactic fermentation in wine. Both basic and practical aspects related to the metabolism of this microorganism and malolactic fermentation in general are critically reviewed. The former examines the role of genetics for the identification and classification of L. oenos and energetic mechanisms on solute transport (malic and lactic acid). The latter includes practical information on biomass production, optimal growth conditions and stress factors, which are important in growth optimization of malolactic starter cultures. Extensive data and references on the effect of malolactic fermentation on wine composition and sensory analysis are also included. Received 06 May 1999/ Accepted in revised form 13 July 1999  相似文献   

9.
This article begins with an introduction to malolactic fermentation in wine, followed by a review of the occurrence of arginine degradation in wine lactic acid bacteria and the pathway of arginine catabolism, the distribution of enzymes responsible, and the formation of products. The bioenergetics of wine lactic acid bacteria and arginine degradation are then reviewed. This is followed by a review of the possible mechanisms of arginine transport, and regulation of arginine metabolism and synthesis of the enzymes for arginine catabolism. Finally, the practical significance of arginine metabolism in wine lactic acid bacteria is reviewed with respect to taxonomic utility, biological significance and oenological implications.  相似文献   

10.
AIMS: The detection and isolation of lactic acid bacteria by enrichment methods from wine grapes cultivated in vineyards located in New South Wales, Australia. METHODS AND RESULTS: Enrichment cultures in de Man, Rogosa and Sharpe (MRS) broth, MRS + ethanol (5%), MRS broth supplemented with 15% (v/v) tomato juice (MRST), pH 5.5 and 3.5 and autoenrichment in grape juice homogenate were used to detect lactic acid bacteria on wine grapes. Bacteria were isolated from enrichment cultures by plating onto MRS and MRST agar and identified by 16S rDNA sequence analysis and phenotypical methods. A molecular method, PCR-denaturing gradient gel electrophoresis (DGGE) was also used to examine the bacteria that developed in enrichment cultures. Species of Lactobacillus, Enterococcus, Lactococcus and Weissella were detected in enrichments by plating and PCR-DGGE. Other bacteria (Sporolactobacillus, Asaia, Bacillus ssp.) were also found in some enrichment cultures. The principal malolactic bacterium, Oenococcus oeni, was not isolated. CONCLUSIONS: The incidence and populations of lactic acid bacteria on wine grapes were very low. Damaged grape berries showed a greater presence of these bacteria than undamaged berries. The diversity of bacterial species isolated from the grapes was greater than those previously reported and represented both lactic acid bacteria and nonlactic acid bacteria. Some of these bacteria (i.e. Lactobacillus lindneri, Lactobacillus kunkeei) could be detrimental to wine production. Oenococcus oeni was not found on grapes, but its recovery could be obscured by overgrowth from other species. SIGNIFICANCE AND IMPACT OF THE STUDY: Lactic acid bacteria are significant in wine production because they conduct the malolactic fermentation and cause stuck or sluggish alcoholic fermentation and wine spoilage. This study investigates wine grapes as a potential source of these bacteria.  相似文献   

11.
Thirty-two strains were isolated from spoiled port wines, from musts and from various styles of young, Northeastern Portuguese red table wines that had undergone spontaneous malolactic fermentation. Comparison of their SDS-PAGE whole-cell protein patterns with an SDS-PAGE database of lactic acid bacteria indicated that the isolates were members of the species Leuconostoc oenos or Lactobacillus paracasei subsp. paracasei. The latter were found in low acidity table wines and in port wine. The isolation of Lactobacillus paracasei strains from wines indicates the importance of using known strains for wine deacidification because spontaneous malolactic fermentation of table wines can occur from an indigenous flora, adapted to the particular composition of the wine.  相似文献   

12.
We showed that the growth of lactic acid bacteria during alcoholic fermentation depends on the composition of the must. We illustrated how the addition of sulfur dioxide to the must before fermentation and the temperature of storage both affect the growth of these bacteria in the wine. Whereas species of Lactobacillus and Leuconostoc mesenteroides were isolated from grapes and must, Leuconostoc oenos was the only species isolated after alcoholic fermentation. This organism was responsible for the malolactic fermentation. Isolates of this species varied in their ability to ferment pentoses and hexoses. The survival of Leuconostoc oenos in wines after malolactic fermentation depended on wine pH, alcohol concentration, SO2 concentration, and temperature of storage.  相似文献   

13.
Inhibition and stimulation reactions between Champagne Saccharomyces cerevisiae strains and lactic acid bacteria have been studied. These yeast-bacterium interactions may account for the difficulties often observed in initiating the process of malolactic fermentation in wines and could be used as a criterion for selecting wine yeasts.  相似文献   

14.
Plasmids in lactic acid bacteria occasionally confer adaptive advantages improving the growth and behaviour of their host cells. They are often associated to starter cultures used in the food industry and could be a signature of their superiority. Oenococcus oeni is the main lactic acid bacteria species encountered in wine. It performs the malolactic fermentation that occurs in most wines after alcoholic fermentation and contributes to their quality and stability. Industrial O. oeni starters may be used to better control malolactic fermentation. Starters are selected empirically by virtue of their fermentation kinetics and capacity to survive in wine. This study was initiated with the aim to determine whether O. oeni contains plasmids of technological interest. Screening of 11 starters and 33 laboratory strains revealed two closely related plasmids, named pOENI-1 (18.3-kb) and pOENI-1v2 (21.9-kb). Sequence analyses indicate that they use the theta mode of replication, carry genes of maintenance and replication and two genes possibly involved in wine adaptation encoding a predicted sulphite exporter (tauE) and a NADH:flavin oxidoreductase of the old yellow enzyme family (oye). Interestingly, pOENI-1 and pOENI-1v2 were detected only in four strains, but this included three industrial starters. PCR screenings also revealed that tauE is present in six of the 11 starters, being probably inserted in the chromosome of some strains. Microvinification assays performed using strains with and without plasmids did not disclose significant differences of survival in wine or fermentation kinetics. However, analyses of 95 wines at different phases of winemaking showed that strains carrying the plasmids or the genes tauE and oye were predominant during spontaneous malolactic fermentation. Taken together, the results revealed a family of related plasmids associated with industrial starters and indigenous strains performing spontaneous malolactic fermentation that possibly contribute to the technological performance of strains in wine.  相似文献   

15.
Aims: To develop rapid methods allowing enumeration of lactic acid bacteria producing biogenic amines in wines and to analyse wine samples by the methods. Methods and Results: Methods based on quantitative PCR targeting bacterial genes involved in histamine, tyramine and putrescine production were developed and applied to detect and quantify the bacteria producing these biogenic amines in wine. Analysis of 102 samples revealed low populations of the targeted bacteria in grape must samples, an increased bacteria biomass in wine samples after alcoholic fermentation, reaching the highest population levels (above 106 cells ml?1) during spontaneous malolactic fermentation. A minimum of 103 ml?1 producing cells was required for production of more than 1 mg l?1 of biogenic amines. Accumulation of putrescine in wine was correlated with the presence of bacteria carrying an ornithine decarboxylation pathway. Trials of winemaking showed that the use of selected bacteria for inducing malolactic fermentation was efficient to limit the proliferation of undesirable bacteria and the production of biogenic amines. Conclusion: Methods using quantitative PCR are efficient to enumerate biogenic amines‐producing cells in wine. Significance and Impact of the Study: The methods can help to better control and to improve winemaking conditions in order to avoid biogenic amine production.  相似文献   

16.
The ability of selected lactic acid bacteria to carry out malolactic fermentation depends on the level of numerous wine characteristics. A Hadamard's experimental matrix was used to determine the main effects of 11 physico-chemical factors on malolactic activity of three Leuconostoc œnos strains and one Lactobacillus plantarum strain. Ethanol had the greatest inhibitory effect on the achievement of malolactic fermentation for all Leuc. œnos strains. An inhibitory effect of the L-malic acid was also found in the operating conditions. These strains show different degrees of sensitivity to pH. One of these strains was inhibited by SO2. Malolactic activity of the Lact. plantarum strain is mainly affected by a low pH, and this strain is often less efficient than Leuc. œnos strains. This methodology could be used for the selection of strains for malolactic starters. Further work is in progress using factorial design in order to determine the interactions between influential factors.  相似文献   

17.
AIMS: In this study we determined the extent to which lactic acid bacteria (LAB) occurred in brandy base wines, their ability to catalyse the malolactic fermentation (MLF) and the effect of MLF on the quality of the base wine and the brandy distillate. METHODS AND RESULTS: Lactic acid bacteria were isolated and enumerated from grape juice, experimental and commercially produced brandy base wines. Spontaneous MLF occurred in approximately 50% of the commercial base wines. The occurrence of MLF had an influence on the quality of the base wines and the resulting distillates. In samples where MLF occurred there was a loss of fruitiness and in the intensity of aroma. Volatile compounds like iso-amyl acetate, ethyl acetate, ethyl caproate, 2-phenethyl acetate and hexyl acetate decreased in samples having undergone MLF, while ethyl lactate, acetic acid and diethyl succinate increased in the same samples. CONCLUSIONS: Spontaneous malolactic fermentation does occur in commercial brandy base wines and it has an influence on base wine and brandy quality. SIGNIFICANCE AND IMPACT OF THE STUDY: This study showed that MLF influences the quality of the base wine and the resulting distillate and with this in mind commercial base wine producers should be able to produce brandy of higher quality.  相似文献   

18.
Metabolic engineering of malolactic wine yeast   总被引:4,自引:0,他引:4  
  相似文献   

19.
AIMS: The goal of this study was to develop a reproducible method for molecular typing strains of Oenococcus oeni, and also to apply it in the study of population dynamics of these strains during malolactic fermentation of wine. METHODS AND RESULTS: A new method of multiplex randomly amplified polymorphic DNA (RAPD)-PCR has been developed, based on the combination of one random 10-mer and one specific 23-mer oligonucleotide in a single PCR. This method generates unique and discriminant DNA profiles for strains of O. oeni. The strains of this species were also clearly distinguished from other species of lactic acid bacteria. The method was applied to study the dynamics of O. oeni strains during malolactic fermentation, in three vintages in the same cellar. CONCLUSIONS: A fast and reliable method for typing strains of O. oeni has been designed and optimized. It improves the reproducibility and rapidity of conventional RAPD-PCR, and it has been validated monitoring the population dynamics during malolactic fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This method will be a good tool to study the population dynamics of bacteria during malolactic fermentation and to evaluate the performance of new malolactic starter cultures and their dominance over the native microbiota.  相似文献   

20.
The dynamics of fungi, yeasts, and lactic acid bacteria during fermentation of four musts were studied. Fungi disappeared quickly in the fermenting must. The lactic acid bacteria population diminished during alcoholic fermentation, then they increased and performed malolactic fermentation. Yeasts grew quickly, reaching maximum populations at different times depending on the vinification treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号