首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper is a common marine pollutant yet its effects on symbiotic cnidarians are largely understudied. To further understand the impact of elevated copper concentrations on marine symbiotic organisms, toxicity tests were conducted using the model sea anemone, Aiptasia pallida, with and without its zooxanthellae symbiont. Symbiotic and aposymbiotic A. pallida were exposed to sublethal copper concentrations (0, 5, 15, and 50 µg/L) for 7 d and copper accumulation, behavior, and the activity of the oxidative stress enzymes, superoxide dismutase (SOD), and catalase (CAT) were measured. Additionally, acute 96-h toxicity tests were conducted to determine LC50 values of the organisms after copper exposure. Both symbiotic and aposymbiotic A. pallida rapidly accumulated copper in a time and dose dependent manner. However, higher copper concentrations accumulated in the aposymbiotic as compared to the symbiotic A. pallida. In response to the highest two copper exposures (15 and 50 µg/L) symbiotic A. pallida upregulated CAT activity to combat the damaging effects of hydrogen peroxide. Contrary to these results, SOD activity significantly decreased during the highest copper exposure, when compared to controls. CAT activity was not detected and SOD was substantially (> 10 fold) reduced in aposymbiotic A. pallida, suggesting that the zooxanthellae are associated with the oxidative stress response. Copper exposure as low as 5 µg/L caused tentacle retraction and increased mucus production in both symbiotic and aposymbiotic anemones. The LC50 values for symbiotic and aposymbiotic A. pallida exposed to copper for 96 h were 148 µg/L (95% confidence interval = 126.4, 173.8) and 206 µg/L (95% confidence interval = 175.2, 242.2), respectively. Understanding the varying responses of symbiotic and aposymbiotic A. pallida to copper stress may advance our comprehension of the functional roles of zooxanthellae and host. Although the mechanism of copper toxicity has not been fully elucidated, it is clear that A. pallida accumulate copper and are sensitive, as effects were detected at environmentally relevant copper concentrations. Likewise, A. pallida may be useful in biomonitoring copper polluted environments.  相似文献   

2.
The vent mussel Bathymodiolus azoricus, host thioautotrophic and methanotrophic bacteria, in their gills and complementary, is able to digest suspended organic matter. But the involvement of nutritional status in metal uptake and storage remains unclear. The influence of B. azoricus physiological condition on its response to the exposure of a mixture of metals in solution is addressed. Mussels from the Menez Gwen field were exposed to 50 μg L− 1 Cd, plus 25 μg L− 1 Cu and 100 μg L− 1 Zn for 24 days. Four conditions were tested: (i) mussels harboring both bacteria but not feed, (ii) harboring only methanotrophic bacteria, (iii) without bacteria but fed during exposure and (iv) without bacteria during starvation. Unexposed mussels under the same conditions were used as controls. Eventual seasonal variations were assessed. Metal levels were quantified in subcellular fractions in gills and digestive gland. Metallothionein levels and condition indices were also quantified. Gill sections were used for fluorescence in situ hybridization (FISH) to assess the temporal distribution of symbiotic associations. Starvation damages metal homeostasis mechanisms and increase the intracellular Zn and MT levels function. There is a clear metallic competition for soluble and insoluble intracellular ligands at each condition. Seasonal variations were observed at metal uptake and storage.  相似文献   

3.
Uptake and depuration kinetics of Cd, Co, Cr, Mn, Ni and Zn were determined in the brown alga Lobophora variegata exposed to realistic concentrations of these metals, using highly sensitive radiotracer techniques. The experiments were designed to assess the possible influence of varying dissolved metal concentrations on the capacity of metal bioconcentration and retention in the alga. Results indicate that the alga takes up Cd, Co, Cr, Ni, and Zn in direct proportion to their ambient dissolved concentrations over the entire range of concentrations tested (three orders of magnitude). In contrast, Mn was taken up in proportion to its dissolved concentration only over a concentration range of 2 orders of magnitude (up to 250 ng Mn L− 1, i.e. 4.55 nM), then at higher concentrations its accumulation efficiency slightly decreased. Overall, L. variegata appears to be a reliable bioindicator species that shows a rapid response time in metal uptake (uptake rate constants ranging from 60 to 1,023 d− 1) and has a suitable potential to furnish valuable information on the bioavailable contamination levels occurring in New Caledonian areas affected by land-based mining activities. Furthermore, due to its wide geographical distribution, L. variegata could be considered as a useful bioindicator species for surveying metal contamination in many other tropical areas.  相似文献   

4.
5.
Evaluation of the assimilation pathway and depuration time of a given pollutant by aquatic species is important to understand the dynamics of this substance in the biota, and to search for potential ecological indicators. In the present study, the uptake pathway and depuration time and rate of the pollutant tributyltin (TBT) were investigated in the omnivorous hermit crab (Clibanarius vittatus). The assimilation and uptake pathway were investigated using hermit crabs collected in an area free of TBT. The crabs were held in the laboratory for 45 days, under one of four treatments: procedural control (PC) - water and food without TBT; T1 - water with and food without TBT; T2 - water without and food with TBT; and T3 - water and food with TBT. To determine the depuration time, the crabs were collected in a contaminated area, maintained in the laboratory with clean water, and removed every 15 days for 120 days. The concentrations of TBT and DBT (dibutyltin) were determined by chromatographic analysis. The TBT was taken up by the crabs mainly via food, and the presence of DBT in crab tissues was hypothesized to result from internal TBT degradation. TBT (as well as DBT) was depurated rapidly by C. vittatus. After approximately 30 days, the initial concentration of 111 ± 36 ng Sn g−1 w. w. decreased to 3 ± 3 ng Sn g−1 w. w., and after 75 days the TBT concentration was below the detection limit. The same pattern was recorded for DBT, which showed a higher depuration rate than TBT. The rapid TBT and DBT depuration is useful information, since C. vittatus and possibly other hermit crabs may be used as indicators of recent or recycled environmental contamination.  相似文献   

6.
Effects of temperature on carbon fixation rates and partitioning between Aiptasia pallida (Verrill) and its symbiotic alga Symbiodinium microadriaticum Freudenthal were examined by 14C incubation studies. Total fixation varied strongly with temperature, with an optimum of 32 °C. More photosynthate was translocated to the host at 12 °C (82%) than at 27 °C (63%). Partitioning among three fractions (alcohol soluble, ether soluble, and alcohol/ether insoluble) varied with temperature in Aiptasia pallida, but not in the alga. Relative partitioning between host and alga increased with time in favor of A. pallida when maintained at 12 °C, but absolute levels of translocation to the host did not change; however, photosynthate retention by the alga did decline substantially. Total fixation declined by ≈ 80% after 10 days at 12 °C. Turnover rates of fixed carbon also varied with temperature, as determined by pulse-chase studies, and the effect varied for the different fractions.These results suggest that zooxanthellae are less thermally adaptable than their hosts, and may be especially susceptible to low temperatures. Thermal effects on biochemical partitioning may have great importance in relation to growth and reproduction of animal hosts of zooxanthellae and the viability of the symbiotic relationship. These effects, combined with the pronounced effect of temperature on total photosynthate production, probably play a major role in limitation of zooxanthellal symbioses to warm waters.  相似文献   

7.
8.
Growth responses of Avicennia marina seedlings to contamination by different concentrations of two essential (Cu, Zn) and two non-essential (Pb, Hg) trace metals were studied under glasshouse conditions. We tested the hypothesis that soil retention and root ultrafiltration would exclude most of the trace metals, and that those that are absorbed and translocated to the shoots would interfere with plant performance and be excreted via leaf salt glands. One-month-old seedlings were subjected to Cu, Zn, Pb and Hg at concentrations of 0, 40, 80, 120 and 160 μg g−1 sediment for 12 months in a randomized complete block design (n = 6). Photosynthesis was measured at the end of 12 months of trace metal exposure with a portable gas exchange system and chlorophyll fluorescence with a pulse-modulated fluorometer. After morphometric measurements, plants were harvested and analyzed for Cu, Zn, Pb and Hg by atomic absorption spectroscopy. Total dry biomass decreased with increasing trace metal concentration for all metals. In the 160 μg g−1 Cu, Zn, Hg and Pb treatments, total biomass was significantly lower than the control value by 43%, 37%, 42% and 40%, respectively. Decreases in plant height and number of leaves followed trends similar to those for total biomass and ranged from 37% to 60%, compared to the controls. Decreases in chlorophyll content in the trace metal treatments ranged from 50% to 58% compared to the control. Carbon dioxide exchange, quantum yield of photosystem II (PSII), electron transport rate (ETR) through PSII and photosynthetic efficiency of PSII (Fv/Fm) were highest in the control treatment and decreased with increasing trace metal concentrations. Decreases in CO2 exchange in the 160 μg g−1 treatments for all trace metals ranged from 50% to 60%. Concentrations of all trace metals in plant organs increased with increasing metal concentrations and were higher in roots than in shoots, with concentrations of Cu and Zn being considerably higher than those of Hg and Pb. Qualitative elemental analyses and X-ray mapping of crystalline deposits over the glands at the leaf surfaces indicated that Cu and Zn were excreted from the salt glands, while Hg and Pb were absent, at least being below the limits of detection. These results demonstrate that growth processes are sensitive to trace metals and therefore can be considered as a cost of metal tolerance, but salt glands of this mangrove species do contribute eliminating at least part of physiologically essential trace metals if taken up in excess.  相似文献   

9.
The sea anemone Anthopleura aureoradiata (Carlgren), which harbours symbiotic dinoflagellates (zooxanthellae), is abundant on mudflats and rocky shores around New Zealand. We measured the potential for particulate nitrogen uptake from sediment by A. aureoradiata and the subsequent consequences of this uptake on the nitrogen status of its zooxanthellae. Sediment was rinsed, labelled with (15NH4)2SO4, and provided to anemones at low (0.23 g ml− 1) and high (1.33 g ml− 1) sediment loads for 6 h. Both anemone tissues and zooxanthellae became enriched with 15N. Enrichment of anemone tissues was similar at both high and low sediment loads, but the zooxanthellae became more enriched at the lower load. This was presumably because the uptake of ammonium, arising from host catabolism, by zooxanthellae is light driven and because the anemones at the lower load were able to extend their tentacles into the light while those at the higher load were not. The influence of sediment uptake on the nitrogen status of the zooxanthellae was determined by measuring the extent to which 20 μM NH4+ enhanced the rate of zooxanthellar dark carbon fixation above that seen in filtered seawater (FSW) alone; the ammonium enhancement ratio (AER) was expressed as [dark NH4+ rate/dark FSW rate], where ‘rate’ refers to C fixation and a ratio of 1.0 or less indicates nitrogen sufficiency. When anemones were starved with and without rinsed sediment in nitrogen-free artificial seawater for 8 weeks, zooxanthellar nitrogen deficiency became apparent at 2-4 weeks and reached similar levels in both treatments (AER = ~ 2). In contrast, anemones fed 5 times per week for 8 weeks with Artemia nauplii were nitrogen sufficient (AER = 1.03). In the field, zooxanthellae from mudflat anemones were largely nitrogen sufficient (AER = 1.26), while nitrogen deficient zooxanthellae were present in anemones from a rocky intertidal site (AER = 2.93). These results suggest that, while there was evidence for particulate nitrogen uptake, dissolved inorganic nitrogen (especially ammonium) in interstitial pore water may be a more important source of nitrogen for the zooxanthellae in mudflat anemones, and may explain the marked difference in nitrogen status between the mudflat and rocky shore populations.  相似文献   

10.
Scleractinian corals are known to suffer bleaching or loss of their symbiotic zooxanthellae under conditions of elevated seawater temperatures often associated with climate change (i.e. global warming). This can occur on a massive scale and has caused the decimation of reefs on a global basis. During the bleaching process, the expelled zooxanthellae suffer cell damage from heat stress, characterized by irreversible ultrastructural and physiological changes which are symptomatic of cell degeneration and death (called apoptosis) or necrosis. A question that remains unanswered, however, is whether the coral hosts themselves are sensitive to seawater temperatures, and, if so, to what degree? In a controlled experiment, we exposed corals Acropora hyacinthus (Dana, 1846) and Porites solida (Forskål, 1775) with their symbiotic zooxanthellae (Symbiodinium sp.) to temperatures of 28 °C (control), 30 °C, 32 °C, and 34 °C for 48 h and also to 36 °C for 12 h. We assessed coral and zooxanthellar cells in-situ for symptoms of apoptosis and necrosis using transmission electron microscopy (TEM), fluorescent microscopy (FM), and flow cytometry (FC). We found that the coral host cells in-situ exhibited, for the most part, little or no mortality from increased seawater temperatures. Damage to the coral hosts only occurred under conditions of prolonged exposure (≥ 12 h) at high temperatures (34 °C), or at exceptionally high temperatures (e.g. 36 °C). On the other hand, we found high levels of apoptosis and necrosis in the zooxanthellae in-situ under all treatment conditions of elevated seawater temperatures. We found that during bleaching, the host cells are not experiencing much mortality - but the zooxanthellae, even while still within the host, are. The host corals exhibit exaptation to accommodate temperatures as high as ≥ 34 °C. Temperature stress within these highly specific and coevolved symbiotic systems is derived not from host sensitivity to temperature, but from the symbiont's sensitivity and the loss of the coral's endosymbiotic partners.  相似文献   

11.
Pesticides such as chlorpyrifos (CPF) and metals such as copper can impair swimming behavior in fish. However, the impact to swimming behavior from exposure to mixtures of neurotoxicants has received little attention. In the current study, we analyzed spontaneous swimming rates of adult zebrafish (Danio rerio) to investigate in vivo mixture interactions involving two chemical classes. Zebrafish were exposed to the neurotoxicants copper chloride (CuCl, 0.1 μM, 0.25 μM, 0.6 μM, or 6.3, 16, 40 ppb), chlorpyrifos (CPF, 0.1 μM, 0.25 μM, 0.6 μM, or 35, 88, 220 ppb) and binary mixtures for 24 h to better understand the effects of Cu on CPF neurotoxicity. Exposure to CPF increased the number of animals undergoing freeze responses (an anti-predator behavior) and, at the highest CPF dose (0.6 μM), elicited a decrease in zebrafish swimming rates. Interestingly, the addition of Cu caused a reduction in the number of zebrafish in the CPF exposure groups undergoing freeze responses. There was no evidence of additive or synergistic toxicity between Cu and CPF. Although muscle AChE activity was significantly reduced by CPF, there was a relatively poor relationship among muscle AChE concentrations and swimming behavior, suggesting non-muscle AChE mechanisms in the loss of swimming behavior. In summary, we have observed a modulating effect of Cu on CPF swimming impairment that appears to involve both AChE and non-AChE mechanisms. Our study supports the utility of zebrafish in understanding chemical mixture interactions and neurobehavioral injury.  相似文献   

12.
Carbon (C) and nitrogen (N) metabolism of the hermatypic coral Acropora pulchra and its symbiotic algae (zooxanthellae) was investigated using 13C and 15N isotope tracers. A. pulchra was incubated in seawater containing 13C-labeled bicarbonate and 15N-labeled nitrate (NO3) for 24 h (pulse period), and subsequently 13C and 15N isotopic ratios of the host coral and the zooxanthellae were followed in 13C- and 15N-free seawater for 2 weeks (chase period). Under our experimental condition of NO3 (12 μM), C and N were absorbed by the coral-algal symbiotic system with the C:N ratio of 23 during the pulse period. Taking account of concentration dependence of NO3 uptake rates determined by a separate experiment, C:N uptake ratios under supposed in situ NO3 conditions (< 1.0 μM) would be > 3.0 times higher, if the photosynthetic rate did not change. During the pulse period, more than half of the absorbed 13C and 15N appeared in the host fraction in organic forms. 13C:15N ratio at the end of the pulse period was similar between the host and the algal fraction, suggesting that algal photosynthetic products were translocated to the host. It is also implied that C:N ratios of the translocated products change depending on N availability for the zooxanthellae. During the chase period, atom % excess (APE) 15N of the zooxanthellae constantly declined, while that of the host slightly increased. Consequently, APE 15N of the both fractions appeared to approach a common steady state value, suggesting that 15N was recycled within the coral-algal symbiotic system. As for C, > 86% of C photosynthetically fixed by the zooxanthellae accumulated in the host at the end of the pulse period, and had a turnover time of ca. 20 days for the host C pool during the following chase period. C:N ratios of organic matter newly synthesized with NO3 exponentially declined and converged into 5.7 and 4.5 for the host and the zooxanthellae, respectively. This suggests that organic compounds of high C:N ratios such as lipids and carbohydrates were selectively consumed more rapidly than those of low C:N ratios such as proteins and nucleic acids.  相似文献   

13.
Anthropogenic metal pollutants bioaccumulated in benthic animals by means of feeding and osmotic diffusion. These metals may affect the physiology of the benthos. In this study, we exposed Capitella sp. I to three metals (Cd, Pb, and Ni), each in eight different concentrations, to determine the effects of metals on the animals. Growth rate, ingestion rate, and percent survival were estimated in three separated experiments. The growth and feeding of the worms were sensitive to even the lowest concentrations of each metal added to the sediments. The lowest observable adverse effect levels for Cd, Ni, and Pb were 0.03, 1.59, and 0.41 μmol g 1 sediment, respectively. Growth rates in the elevated metal contaminant treatments decreased drastically at slightly contaminated levels, lessened detrimental effects at moderately contaminated levels, and showed incompensable intoxication at heavily contaminated levels. The trends in ingestion rates were similar to those of growth rates. No significant difference in survivorship was found among the different contaminant levels for any of the three heavy metals. Capitella sp. I was most sensitive to Cd, followed by Ni and Pb, which had similar effects. The rapid physiological responses of Capitella sp. I allowed the animals to survive metal exposure. Sediment productivity remained unchanged at different contamination levels of Ni and Pb, but was drastically reduced at 4.75 μmol g 1 Cd in the sediment. This further demonstrated Capitella sp. I can adjust their ingestion rates to maintain constant sediment productivities in moderate pollution conditions; however, when threshold concentration was exceeded, homeostasis collapsed.  相似文献   

14.
We investigated the effect of long-term exposure to CBZ on the antioxidant system in brain tissue of rainbow trout. Fish were exposed to sublethal concentrations of CBZ (1.0 μg/L, 0.2 mg/L or 2.0 mg/L) for 7, 21, and 42 days. Oxidative stress indices (LPO and CP) and activities of antioxidant enzymes (SOD, CAT, GPx and GR) in fish brain were measured. In addition, non-enzymatic antioxidant (GSH) was determined after 42 days exposure. Carbamazepine exposure at 0.2 mg/L led to significant increases (p < 0.05) of LPO and CP after 42 days and, at 2.0 mg/L, after 21 days. Activities of the antioxidant enzymes SOD, CAT, and GPx in CBZ-treated groups slightly increased during the first period (7 days). However, activities of all measured antioxidant enzymes were significantly inhibited (p < 0.05) at 0.2 mg/L exposure after 42 days and after 21 days at 2.0 mg/L. After 42 days, the content of GSH in fish brain was significantly lower (p < 0.05) in groups exposed to CBZ at 0.2 mg/L and 2.0 mg/L than in other groups. Prolonged exposure to CBZ resulted in excess reactive oxygen species formation, finally resulting in oxidative damage to lipids and proteins and inhibited antioxidant capacities in fish brain. In short, a low level of oxidative stress could induce the adaptive responses of antioxidant enzymes, but long-term exposure to CBZ could lead to serious oxidative damage in fish brain.  相似文献   

15.
16.
Combined effects of acclimation temperature (12, 20 and 28 °C) and exposure to a toxic metal cadmium (Cd, 50 μg L−1) on haemolymph parameters related to immune defense and metal transport were studied in a model marine bivalve, Crassostrea virginica. Acclimation to elevated temperatures resulted in higher plasma protein concentrations and increased Cd levels in oyster haemolymph plasma and haemocytes. Cd accumulation in haemocytes was linear over the 45 days of Cd exposure and accumulation rates were 0.10, 0.53 and 0.56 μg Cd g−1 dry mass at 12, 20 and 28 °C, respectively. Percentage of blood Cd burden associated with haemocytes increased with increasing temperatures from 13–20% at 12 °C to 26–47% at 20 and 28 °C suggesting a higher role for cellular Cd transport at elevated temperatures. Cd levels in gills and hepatopancreas were positively correlated with Cd concentration in haemocytes, but accumulation rates were considerably faster, so that after 45 days of exposure Cd levels in gills and hepatopancreas were >10–20 times higher than in haemocytes. As a result of slow Cd accumulation possibly reflecting fast haemocyte turnover rates and/or exocytosis of Cd-containing granules, haemocytes in Cd-exposed oysters did not reach threshold Cd burdens required to trigger apoptosis. This suggests that haemocyte viability is not likely to contribute to immunosuppression in the environmentally relevant Cd range. In contrast, elevated temperature (28 °C) resulted in a significant increase in the percentage of apoptotic haemocytes compared to 12 or 20 °C supporting the notion that 28 °C is physiologically stressful for C. virginica. Overall, our study demonstrates strong effects of environmental temperature on haemocyte viability and other important blood parameters such as plasma protein content and metal transport capability which may mask potential Cd effects at environmentally relevant exposure levels.  相似文献   

17.
The interaction between Cd and Zn in aquatic organisms is known to be highly variable. The purpose of this study was to use a subcellular compartmentalization approach to examine Cd and Zn interactions in the deposit-feeding polychaete Capitella capitata (sp. I). Laboratory-reared C. capitata were co-exposed to Cd (background or 50 μg Cd l− 1) and Zn (background or 86 μg Zn l− 1) with 109Cd and 65Zn as radiotracers for 1 week. After the 1-week uptake period, subsets of worms were allowed to depurate accumulated metals for an additional 1 week. Worms from both phases (uptake and loss) were then subjected to subcellular fractionation to determine the compartmentalization of metals as metal-sensitive fractions [MSF — organelles and heat-denaturable proteins (HDP)] and biologically detoxified metals [BDM — heat-stable proteins (HSP) and metal-rich granules (MRG)]. Uptake and loss of Cd and Zn in C. capitata at the whole body level were similar at bkgd-Cd/bkgd-Zn, with worms depurating the majority of accumulated metal (∼ 75% Cd and ∼ 64% Zn). When exposure of Zn or Cd was increased (bkgd-Cd/86-Zn; bkgd-Zn/50-Cd), uptake of background levels of Cd or Zn, respectively, was suppressed by ∼ 50%. These accumulated metals, however, were retained during the loss phase resulting in ∼ 40-50% greater Cd and Zn whole body tissue burdens than those of bkgd-Cd/bkgd-Zn worms. Beyond exhibiting similar patterns of uptake and loss at the whole body level, Cd and Zn behaved similarly at the subcellular level. Under background levels (bkgd-Cd/bkgd-Zn), after uptake, worms partitioned a majority of Cd (∼ 65%) and Zn (∼ 55%) to the HSP and organelles fractions. The HDP and MRG fractions contained less than ∼ 6% of both metals. Following depuration, at bkgd-Cd/bkgd-Zn, Cd and Zn were lost from all subcellular fractions; loss from HSP was the greatest contributor to whole body loss. When exposed to elevated concentrations of Zn or Cd, the suppression in uptake of bkgd-Cd or bkgd-Zn observed in whole body uptake was largely due to suppressions in the storage of Cd and Zn to HSP. These results suggest that Cd-Zn interactions reduce partitioning of both Cd and Zn to HSP, indicating that metal-binding proteins such as metallothioneins play a key role in these interactions.  相似文献   

18.
The purpose of this study was to investigate the long-term bioaccumulation and elimination of Cd, Pb, Mn, Zn and Fe by Pinna nobilis tissues after their 90 day-transplantation period at Téboulba fishing harbor. During the transplantation period, the Cd, Pb, Mn, Zn and Fe concentrations in the different tissues of the mussels were measured before and after exposure period. Metal (Cd, Pb, Mn, Zn and Fe) accumulation in P. nobilis mussels varied depending on the analyzed tissue and the caging times. Notable differences in Cd, Pb, Mn, Zn and Fe accumulation patterns within the digestive gland, gills and muscle were found and may be due to the ability of each tissue to accumulate metals. During the depuration phase, the elimination of Cd, Pb, Mn, Zn and Fe depended on the target tissue and the metal speciation. Cd, Pb, Mn and Fe were eliminated rapidly from one organ and increased in other when compared to those of 90 day transplanted mussels. The increase of metal loads during the elimination phase is not clear and particularly what kind of processes is responsible for such response. However, it is reasonable to assume that metals increase is related to the existence of an accumulation/detoxification mechanism, which involves the transport of metals from an organ to another. The data obtained indicate that because of the significantly high quantities of Cd, Pb, Mn, Zn and Fe accumulated during the exposure phase, the transplanted mussels are suitable bioindicators for monitoring trace metals in marine ecosystem.  相似文献   

19.
Ecosystem resilience to climate anomalies is related to the physiological plasticity of organisms. To characterize the physiological response of some common Mediterranean gorgonians to fluctuations in temperature, four species (Paramuricea clavata, Eunicella singularis, Eunicella cavolinii and Corallium rubrum) were maintained in aquaria, in which the temperature was increased every ten days with increments of 2-3 °C, starting at 14 °C, ending at 25 °C. Oxygen consumption, number of open/closed polyps and percentage of necrotic tissue were monitored. All species showed similar activity patterns with increasing temperature. P. clavata and E. singularis showed the highest respiration rate at 18 °C, E. cavolinii and C. rubrum at 20 °C. Above these temperatures, both oxygen consumption and polyp reactivity decreased in all species. The present data confirm a reduction of the metabolic activity in Mediterranean gorgonians during periods of high temperature. At temperatures above 18 °C, the percentage of open polyps (considered as a parameter to evaluate polyps reactivity) decreased, thus mirroring the trend of oxygen consumption. The average values of Q10 indicated that gorgonians have a definite temperature limit over which the metabolism (oxygen consumption) stop to follow the temperature increase. After three days at 25 °C, metabolic activity in E. cavolinii, C. rubrum and P. clavata further decreased and the first signs of necrosis were observed. At this temperature, activity remained unchanged in E. singularis. This species seems to more resistant to thermal stress. The symbiotic zooxanthellae present in this species are likely to provide an alternative source of energy when polyps reduce their feeding activity.  相似文献   

20.
The objective of this work was to determine the transfer of phenanthrene (PHE) from air to grassland plants and soil compartments and its effects on the plant growth and symbiotic root microorganisms (arbuscular mycorrhizal fungi and Rhizobium nodules). The experimental procedure exposed Trifolium pratense L. or Lolium perenne L. to atmospheric PHE pollution (150 μg m−3) over the course of one month. PHE was transferred from the air to the leaves and to the soil surfaces. In leaves, PHE was mostly absorbed in the inner leaf tissues, representing 92% and 73% of the total PHE amount quantified in leaves, respectively for clover and ryegrass. In soils, most of PHE contamination was recovered in the top layer (0-1 cm) and did not readily diffuse into the deep layer (1-10 cm). The highest PHE concentration recovered in deep roots (1.8 and 4.5 μg g−1 dry weight (DW), respectively for clover and ryegrass) related to the lowest PHE concentration recovered in its associated soil suggested a PHE translocation from shoots to roots within the two plant species. The large PHE amount quantified in clover shoots (124 μg g−1 DW) induced a significant diminution by 30% of the shoot biomass whereas root biomass remained stable. Efficient mycorrhizal symbiosis was maintained during exposure whereas the Rhizobium nodule symbiosis was altered in the surface of soil. By contrast, neither biomass accumulation nor symbiotic association was affected in ryegrass, probably due to a lower sensitivity of this species to PHE exposure. Perspectives of carbon allocation and nitrogen nutrition perturbations are suggested in clovers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号