首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
2.
Climate warming has been increasing ocean water temperature and decreasing oxygen concentrations, exposing aquatic organisms to environmental stress conditions. The shrimp Litopenaeus vannamei manages to survive these harsh environmental conditions by enhancing their antioxidant defenses, among other strategies. In this study, we report the mitochondrial manganese superoxide dismutase (mMnSOD) nucleotide and deduced amino acid sequences and its gene expression in L. vannamei tissues. The deduced protein has 220 amino acids with a signal peptide of 20 amino acids. Expression of mMnSOD was analyzed in hepatopancreas, gills and muscle, where gills had highest expression in normoxic conditions. In addition, shrimp were subjected to high temperature, hypoxia and reoxygenation to analyze the effect on the expression of mMnSOD and SOD activity in mitochondria. High temperature and hypoxia showed a synergistic effect in the up-regulation on expression of mMnSOD in gills and hepatopancreas. Moreover, induction in SOD activity was found in the mitochondrial fraction from gills of normoxia at high temperature, probably due to an overproduction of reactive oxygen species caused by an elevated metabolic rate due to the stress temperature. These results suggest that the combined stress conditions of hypoxia and high temperature trigger molecularly the antioxidant response in L. vannamei in a higher degree than only one stressor.  相似文献   

3.
The main aim of this work was to provide baseline data on aspects of pro-oxidant and antioxidant processes in different life-stages of the marine amphipod Gammarus locusta. The activities of antioxidant enzymes and levels of lipid peroxidation were determined in whole body juveniles, subadults, and male and female adults of a laboratory population of G. locusta. Fatty acid composition of individuals at these different stages of development was also characterised in order to examine the contribution that polyunsaturated fatty acids (PUFA) might make to the peroxidation status of animals. The antioxidant enzymes, measured in whole body 100,000 supernatants, comprised catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD; EC 1.15.1.1) and glutathione peroxidase (GPX; EC 1.11.1.9). Fatty acids were analysed as fatty acid methyl esters (FAME). Lipid peroxidation was examined in terms of the levels of lipid peroxides determined as thiobarbituric acid-reactive malondialdehyde equivalents. Age-related changes were seen in antioxidant enzyme status: levels of SOD (p<0.01) and GPX (p<0.001) activities decreased progressively during development from juveniles to adults. Sex-related changes in GPX activity were also seen, the levels being higher in adult males than females (p<0.001). The amount of FAME present in whole body amphipod also changed over the life span. Among PUFA, the eicosapentaenoic (C20:5n-3), arachidonic (C20:4n-6) and docosahexaenoic (C22:6n-3) were the most abundant acids in this species, and both their individual concentrations and total PUFA increased progressively with age (up to 3.3-fold; p<0.001). The latter changes may contribute to the explanation of the observed differences in peroxidation status of the animals with age; thus, levels of lipid peroxides increased up to 40% in adult males compared to other age-classes (p<0.01). Overall, the decline in antioxidant enzyme activities, coupled with increased levels of PUFA, as the individual grows older, may render the older animals more susceptible to lipid peroxidation and oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号