首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aimed to estimate reactive oxygen species (ROS) production, antioxidants activity, and biomarkers level of oxidative damage to protein and DNA in the cerebrospinal fluid (CSF) of C57BL/6 mice infected with Angiostrongylus cantonensis. The mean ROS concentration in the CSF of infected mice increased gradually, and the increase in ROS in CSF became statistical significance at days 12-30 post-infection compared to that before infection (< 0.001), and then ROS returned to normal level at day 45 after infection. In parallel with the increase in ROS in the CSF, infected mice showed similar of changes in reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST) as that in ROS in the CSF. GSH, GR, GPx, and GST in the CSF of infected mice were all significantly higher than they were before infection during days 12-30 post-infection. However, protein carbonyl content and 8-hydroxy-2′-deoxyguanosine, biomarkers of oxidative damage to protein and DNA, respectively, were also significantly higher in the CSF of infected mice during this period. These results suggest that oxidative stress occur in the cells of central nervous system of mice infected with A. cantonensis during days 12-30 after infection due to ROS overproduction in CSF despite the increase in antioxidants during this period.  相似文献   

2.
Glutathione S-transferase (GST; EC 2.5.1.18) plays a critical role in detoxification pathways. In this study, we report cloning and expression of seven genes of the GST family of the pufferfish Takifugu obscurus together with mRNA tissue distribution pattern and time-course of expression in response to exposure to cadmium. At basal levels of tissue expression, GST-Mu is highly expressed in liver compared with other tissues. When fish were exposed to cadmium (5 mg/L for 96 h), expression of GST-MAPEG, GST-Mu, GST-Omega, and GST-Zeta was greatly increased, whereas GST-Alpha and GST-Kappa genes showed no significant response. These findings suggest that gene expression of a number of GST isoforms in T. obscurus is modulated in response to exposure to cadmium. We propose GST-Mu, GST-Theta, and GST-Zeta as candidate biomarkers for heavy metal exposure in this fish.  相似文献   

3.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

4.
5.
To identify and evaluate potentially useful biomarkers for oxidative stress as early warning indices in the polychaete, Perinereis nuntia, we exposed P. nuntia to copper (Cu) and measured several biomarker enzymes (glutathione S-transferase; GST, glutathione peroxidase; GPx, Metallothionein-like protein; MTLPs, and catalase; CAT) and genes (Pn-GSTs, Pn-CAT, and Pn-MT) with a cellular oxidative index, reactive oxygen species (ROS) level. Accumulated Cu concentrations in P. nuntia increased in a time-dependent manner. Intracellular ROS reached high levels 6h after exposure in P. nuntia with an increase of GST activity and glutathione (GSH) content. Particularly, GSH in polychaetes showed a positive correlation with Cu contents accumulated in P. nuntia. Messenger RNA expressions of GST sigma and GST omega showed relatively high expressions at 50 μg/L of Cu exposure, even though the moderate increase of rest of GST isoforms was also observed. Also regarding long-term exposure, we reared P. nuntia in sediments for 15 days, and found that there was an obvious increase of Pn-GSTs, Pn-CAT, and Pn-MT genes with elevated concentrations of Cu and Cd in polychaete body, compared to initial levels, suggesting that P. nuntia in sediment was affected by metals as well as by other organic pollutants to induce oxidative stress genes and enzymes. These findings suggest that oxidative stress is a potential modulator of defense system of P. nuntia. Several potential biomarker genes are available as early warning signals for environmental biomonitoring.  相似文献   

6.
Burak Kaptaner 《Cytotechnology》2016,68(4):1577-1583
The present study was conducted to determine cytotoxic effects of 4-octylphenol (4-OP) on primary cultured hepatocytes of pearl mullet (Alburnus tarichi). Lactate dehydrogenase (LDH) release, malondialdehyde (MDA) level, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST)] and glutathione (GSH) content were measured after 24-h exposure to 4-OP. 4-OP caused dose- and time-dependent increases in LDH release. Significant induction of MDA level and decrease in GSH content were found. SOD and GPx activities were decreased while GST activity was increased. These findings suggest that 4-OP leads to cytotoxicity by depressing antioxidant defenses in fish hepatocytes.  相似文献   

7.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

8.
9.
10.
Mussels Perna perna were exposed to air for 24 h showing a clear increase in the levels of lipid peroxidation and oxidative DNA damage, measured as 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo). The levels of lipid peroxidation increased both in the digestive gland and gills, while oxidative DNA damage increased only in the gills. After the 24 h of air exposure, mussels were re-submersed for a period of 3 h, leading values to return to a pre-aerial exposure levels. Control animals were kept immersed during the whole period. Several antioxidant and complementary enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glucose-6-phosphate dehydrogenase (G6PDH), glutathione S-transferase (GST) and the levels of total glutathione (Total GSH) were assayed in a second set of experiments where one group of mussels were exposed to air for 18 h and other to 1 h re-submersion after 18 h aerial exposure. Only a 52% increase in the glutathione S-transferase activity was observed in the digestive gland, which remained elevated to about 40% after 1 h re-submersion, showing that defense systems can be modulated even during oxygen deprivation in P. perna. The DNA and lipid oxidative damage observed after aerial exposure indicates that mussels face an oxidative challenge, and are able to counteract such an “insult” as values of lipid peroxidation and DNA damage returned to control values after 3 h re-submersion.  相似文献   

11.

Aims

The aim of this study was to evaluate the antioxidant status and oxidative stress biomarkers in the blood of children and teenagers with Down syndrome.

Main methods

The analysis of enzymatic antioxidant defenses, such as the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione transferase (GST), non-enzymatic antioxidants, such as levels of reduced glutathione (GSH), uric acid (UA) and vitamin E, as well as oxidative damage indicators, such as protein carbonyls (PC) levels and lipoperoxidation (TBARS), of DS individuals (n = 20) compared to healthy controls (n = 18). Except the vitamin E was measured by HPLC, all other markers were measured spectrophotometrically.

Key Findings

Antioxidant enzymes analysis showed significant increases in the SOD (47.2%), CAT (24.7%) and GR (49.6%) activities in DS subjects. No significant difference in GPx activity was detected while GST activity (61.2%) was decreased, and both responses may be consequence of the depletion of GSH (24.9%) levels. There were no significant differences in TBARS levels, while PC levels showed decreased (31.7%) levels compared to healthy controls, which may be related to the increase (16.1%) found in serum UA. Levels of vitamin E showed no significant differences between DS individuals compared to controls.

Significance

The results revealed a systemic pro-oxidant status in DS individuals, evidenced by the increased activity of some important antioxidant enzymes, together with decreased GSH levels in whole blood and elevated UA levels in plasma, probably as an antioxidant compensation related to the redox imbalance in DS individuals.  相似文献   

12.
The effect of 20-hydroxyecdysone (20E) and juvenile hormone (JH) on the glutathione pathway of the greater wax moth Galleria mellonella (Lepidoptera: Pyralidae) was determined by investigating glutathione peroxidase (GSH-Px), glutathione S-transferases (GST), and glutathione reductase (GR) activities as well as reduced and oxidized glutathione (GSH and GSSG) content with respect to developmental stage. The continuous decreases of GSH-Px and GST activities dependent on the growth period of G. mellonella occurred in JH and 20E groups over and under their controls, respectively. While the GR activities of G. mellonella showed increases in young pupa (YP) for both control and in old larvae (OL) for the 20E groups after the minimum at these periods, they also increased after old pupa (OP) for the JH group with a maximum in OL period. Although GR activity levels in the JH group were significantly higher compared with controls and 20E groups up to OP period, the activity levels for the control and 20E groups were higher than those of the JH group at adult (AD) and old pupa (OP) periods, respectively. In spite of increases in the GR activity of 20E and control groups of G. mellonella, decreased GSH and increased GSSG levels were observed at aging period. GSH levels in the JH group reached a maximum at prepupa (PP) and then decreased with non-significant changes from OL to AD period. According to the results, GSH and GSSG levels, as well as GSH/GSSG ratios, were below and over control levels in 20E and JH groups, respectively, during all of the investigated developmental stages. On the contrary, the LPO levels were higher than the control for 20E and lower for the JH groups during the developmental period. These results show that while ecdysone hormone has a negative effect on the glutathione-related detoxication capacity of G. mellonella, the juvenile hormone has a positive effect on this process.  相似文献   

13.
Intertidal alga Gracilaria corticata growing in natural environment experiences various abiotic stresses during the low tides. The aim of this study was to determine whether desiccation exposure would lead to oxidative stress and its effect varies with exposure periods. This study gives an account of various biochemical changes in G. corticata following the exposure to desiccation for a period of 0 (control), 1, 2, 3 and 4 h under controlled conditions. During desiccation, G. corticata thalli showed dramatic loss of water by almost 47% when desiccated for 4 h. The enhanced production of reactive oxygen species (ROS) and increased lipid peroxidation observed during the exposure of 3-4 h were chiefly contributed by higher lipoxygenase (LOX) activity with the induction of two new LOX isoforms (LOX-2, ∼85 kDa; LOX-3, ∼65 kDa). The chlorophyll, carotenoids and phycobiliproteins (phycoerythrin and phycocyanin) were increased during initial 2 h exposure compared to control and thereafter declined in the succeeding exposure. The antioxidative enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), glutathione peroxidase (GPX) and the regeneration rate of reduced ascorbate (AsA) and glutathione (GSH) increased during desiccation up to 2-3 h. Further, the isoforms of antioxidant enzymes Mn-SOD (∼150 kDa), APX-4 (∼110 kDa), APX-5 (∼45 kDa), GPX-1 (∼80 kDa) and GPX-2 (∼65 kDa) responded specifically to the desiccation exposure. Compared to control, a relative higher content of both free and bound insoluble putrescine and spermine together with enhanced n-6 PUFAs namely C20:4(n-6) and C20:3(n-6) fatty acids found during 2 h exposure reveals their involvement in defence reactions against the desiccation induced oxidative stress.  相似文献   

14.
Glutathione S-transferases (GSTs: EC2.5.1.18) are a superfamily of multifunctional dimeric enzymes that catalyze the conjugation of glutathione (GSH) to electrophilic chemicals. In most animals and in humans, GSTs are the principal enzymes responsible for detoxifying the mycotoxin aflatoxin B1 (AFB1) and GST dysfunction is a known risk factor for susceptibility towards AFB1. Turkeys are one of the most susceptible animals known to AFB1, which is a common contaminant of poultry feeds. The extreme susceptibility of turkeys is associated with hepatic GSTs unable to detoxify the highly reactive and electrophilic metabolite exo-AFB1-8,9-epoxide (AFBO). In this study, comparative genomic approaches were used to amplify and identify the α-class tGST genes (tGSTA1.1, tGSTA1.2, tGSTA1.3, tGSTA2, tGSTA3 and tGSTA4) from turkey liver. The conserved GST domains and four α-class signature motifs in turkey GSTs (with the exception of tGSTA1.1 which lacked one motif) confirm the presence of hepatic α-class GSTs in the turkey. Four signature motifs and conserved residues found in α-class tGSTs are (1) xMExxxWLLAAAGVE, (2) YGKDxKERAxIDMYVxG, (3) PVxEKVLKxHGxxxL and (4) PxIKKFLXPGSxxKPxxx. A BAC clone containing the α-class GST gene cluster was isolated and sequenced. The turkey α-class GTS genes genetically map to chromosome MGA2 with synteny between turkey and human α-class GSTs and flanking genes. This study identifies the α-class tGST gene cluster and genetic markers (SNPs, single nucleotide polymorphisms) that can be used to further examine AFB1 susceptibility and resistance in turkeys. Functional characterization of heterologously expressed proteins from these genes is currently underway.  相似文献   

15.
The recommended field dose (RFD) of isoproturon induced significant accumulations of H2O2 in the leaves of 10-d-old maize seedlings throughout the following 20 d; the accumulation increased with time and also with herbicide dose. Meanwhile, low doses significantly increased ascorbic acid, glutathione and thiols while high doses caused diminutions. Superoxide dismutase (SOD; EC 1.15.1.1) activity was significantly enhanced up to the 12th d whereas ascorbate peroxidase (APX; EC 1.11.1.7) activity was significantly reduced after the fourth d onwards. Catalase (CAT; EC 1.11.1.6) and guaiacol peroxidase (GPX; EC 1.11.1.7) activities were similarly increased during the first 4 d but decreased from the 12th and the eighth d, respectively. Low doses increased SOD and GPX activities but high doses led to diminutions whereas CAT and APX were reduced by all doses. The activities of γ-glutamyl-cysteine synthethase (γ-GCS; EC 6.3.2.2) and glutathione synthethase (GSS; EC 6.3.2.3) were enhanced for 4 d; high doses caused general reductions. Isoproturon significantly reduced activities of glutathione S-transferase (GST; EC 2.5.1.18) isoforms [GST(CDNB), GST(ALA), or GST(MET)] after the fourth d, however, it had no effect on GST(ATR). Similar reductions in activities of glutathione peroxidase (GSPX; EC 1.15.1.1) and glutathione reductase (GR; EC 1.6.4.2) were detected up to the 16th and the 12th d, respectively. The activities of GST isoforms, GSPX and GR were reduced by high doses. These changes seemed to be related and might point to an oxidative stress state that exacerbated with prolonged time and/or increased isoproturon dose.  相似文献   

16.
The current study evaluated the hazards of Zinc oxide nanoparticles (ZnONPs) on Nile Tilapia liver and gill antioxidants enzymes activities and antioxidants genes expressions. The ameliorative action of vitamins E and C mixture was investigated. Two hundred males of Nile Tilapia were exposed to one and two mg?L?1 of ZnONPs either with or without vitamin C and E mixture for 7 and 15?days. Glutathione reductase (GR), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) activities and gene expression as well glutathione (GSH) and lipid peroxide (LPO) levels were investigated. The results revealed that the exposure to ZnONPs could induce alterations in the liver and gills antioxidants and LPO of Nile Tilapia. Moreover, the mixture of vitamin E and C highly effective in alleviation the toxic effect of ZnONPs.  相似文献   

17.
Mountain environmental stresses result in increased formation of hydrogen peroxide (H2O2) and accumulation of malondialdehyde (MDA) in leaves of Polygonum viviparum. The activities of several antioxidative system enzymes such as superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), glutathione reductase (GR, EC 1.6.4.2), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and the contents of several non-enzymatic antioxidants such as reduced form of ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) were investigated in leaves of P. viviparum, which were collected from three altitudes (2,200, 3,200, and 3,900 m) of Tianshan Mountain in China. The activities of these four antioxidative enzymes were accompanied by increases of H2O2 levels from 2,200 to 3,200 m. However, the activities of CAT and POD were decreased, whereas the activities of SOD and GR continually increased at 3,900 m. Analyses of isoforms of SOD, CAT, POD, and GR showed that the leaves of P. viviparum exposed different altitude conditions are capable of differentially altering the intensity. Additionally, two new isoforms of SOD were detected at 3900 m. A continual increase in the ASC, ASC to DHA ratio, GSH and GSH/[GSH + GSSG] ratio, and the activity of DHAR were observed in leaves of P. viviparum with the elevation of altitude. These results suggest that the higher contents of ASC, GSH as well as an increase in reduced redox state may be essential to antioxidation processes in the leaves of P. viviparum, whereas antioxidant enzymes system is a cofactor in the processes.  相似文献   

18.
Chemopreventive potential of Acacia nilotica bark extract (ANBE) against single intraperitoneal injection of N-nitrosodiethylamine (NDEA, 200 mg/kg) followed by weekly subcutaneous injections of carbon tetrachloride (CCl4, 3 ml/kg) for 6 weeks induced hepatocellular carcinoma (HCC) in rats was studied. At 45 day after administration of NDEA, 100 and 200 mg/kg of ANBE were administered orally once daily for 10 weeks. The levels of liver injury and liver cancer markers such as alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), γ-glutamyl transferase (γ-GT), total bilirubin level (TBL), α-feto protein (AFP) and carcinoembryonic antigen (CEA) were substantially increased following NDEA treatment. However, ANBE treatment reduced liver injury and restored liver cancer markers. ANBE also significantly prevented hepatic malondialdehyde (MDA) formation and reduced glutathione (GSH) in NDEA-treated rats which was dose dependent. Additionally, ANBE also increased the activities of antioxidant enzymes viz., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) in the liver of NDEA-administered rats. Eventually, ANBE also significantly improved body weight and prevented increase of relative liver weight due to NDEA treatment. Histological observations of liver tissues too correlated with the biochemical observations. HPLC analysis of ANBE showed the presence of gallic, protocatechuic, caffeic and ellagic acids, and also quercetin in ANBE. The results strongly support that A. nilotica bark prevents lipid peroxidation (LPO) and promote the enzymatic and non-enzymatic antioxidant defense system during NDEA-induced hepatocarcinogenesis which might be due to activities like scavenging of oxy radicals by the phytomolecules in ANBE.  相似文献   

19.
20.
Zhu H  Itoh K  Yamamoto M  Zweier JL  Li Y 《FEBS letters》2005,579(14):3029-3036
Understanding the molecular pathway(s) of antioxidant gene regulation is of crucial importance for developing antioxidant-inducing agents for the intervention of oxidative cardiac disorders. Accordingly, this study was undertaken to determine the role of Nrf2 signaling in the basal expression as well as the chemical inducibility of endogenous antioxidants and phase 2 enzymes in cardiac fibroblasts. The basal expression of a scope of key cellular antioxidants and phase 2 enzymes was significantly lower in cardiac fibroblasts derived from Nrf2-/- mice than those from wild type control. These include catalase, reduced glutathione (GSH), glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NQO1). Incubation of Nrf2+/+ cardiac fibroblasts with 3H-1,2-dithiole-3-thione (D3T) led to a significant induction of superoxide dismutase (SOD), catalase, GSH, GR, glutathione peroxidase (GPx), GST, and NQO1. The inducibility of SOD, catalase, GSH, GR, GST, and NQO1, but not GPx by D3T was completely abolished in Nrf2-/- cells. The Nrf2-/- cardiac fibroblasts were much more sensitive to reactive oxygen and nitrogen species-mediated cytotoxicity. Upregulation of antioxidants and phase 2 enzymes by D3T in Nrf2+/+ cardiac fibroblasts resulted in a dramatically increased resistance to the above species-induced cytotoxicity. In contrast, D3T-treatment of the Nrf2-/- cells only provided a slight cytoprotection. Taken together, this study demonstrates for the first time that Nrf2 is critically involved in the regulation of the basal expression and chemical induction of a number of antioxidants and phase 2 enzymes in cardiac fibroblasts, and is an important factor in controlling cardiac cellular susceptibility to reactive oxygen and nitrogen species-induced cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号