首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irradiation of simian virus 40 (SV40)-infected cells with low fluences of UV light (20 to 60 J/m2, inducing one to three pyrimidine dimers per SV40 genome) causes a dramatic inhibition of viral DNA replication. However, treatment of cells with UV radiation (20 J/m2) before infection with SV40 virus enhances the replication of UV-damaged viral DNA. To investigate the mechanism of this enhancement of replication, we analyzed the kinetics of synthesis and interconversion of viral replicative intermediates synthesized after UV irradiation of SV40-infected cells that had been pretreated with UV radiation. This enhancement did not appear to be due to an expansion of the size of the pool of replicative intermediates after irradiation of pretreated infected cells; the kinetics of incorporation of labeled thymidine into replicative intermediates were very similar after irradiation of infected control and pretreated cells. The major products of replication of SV40 DNA after UV irradiation at the low UV fluences used here were form II molecules with single-stranded gaps (relaxed circular intermediates). There did not appear to be a change in the proportion of these molecules synthesized when cells were pretreated with UV radiation. Thus, it is unlikely that a substantial amount of DNA synthesis occurs past pyrimidine dimers without leaving gaps. This conclusion is supported by the observation that the proportion of newly synthesized SV40 form I molecules that contain pyrimidine dimers was not increased in pretreated cells. Pulse-chase experiments suggested that there is a more efficient conversion of replicative intermediates into form I molecules in pretreated cells. This could be due to more efficient gap filling in relaxed circular intermediate molecules or to the release of blocked replication forks. Alternatively, the enhanced replication observed here may be due to an increase in the excision repair capacity of the pretreated cells.  相似文献   

2.
We have used in vitro DNA replication systems from human HeLa cells and monkey CV-1 cells to replicate a UV-damaged simian virus 40-based shuttle vector plasmid, pZ189. We found that replication of the plasmid was inhibited in a UV fluence-dependent manner, but even at UV fluences which caused damage to essentially all of the plasmid molecules some molecules became completely replicated. This replication was accompanied by an increase (up to 15-fold) in the frequency of mutations detected in the supF gene of the plasmid. These mutations were predominantly G:C-->A:T transitions similar to those observed in vivo. Treatment of the UV-irradiated plasmid DNA with Escherichia coli photolyase to reverse pyrimidine cyclobutane dimers (the predominant UV-induced photoproduct) before replication prevented the UV-induced inhibition of replication and reduced the frequency of mutations in supF to background levels. Therefore, the presence of pyrimidine cyclobutane dimers in the plasmid template appears to be responsible for both inhibition of replication and mutation induction. Further analysis of the replication of the UV-damaged plasmid revealed that closed circular replication products were sensitive to T4 endonuclease V (a pyrimidine cyclobutane dimer-specific endonuclease) and that this sensitivity was abolished by treatment of the replicated DNA with E. coli photolyase after replication but before T4 endonuclease treatment. These results demonstrate that these closed circular replication products contain pyrimidine cyclobutane dimers. Density labeling experiments revealed that the majority of plasmid DNA synthesized in vitro in the presence of bromodeoxyuridine triphosphate was hybrid density whether or not the plasmid was treated with UV radiation before replication; therefore, replication of UV-damaged templates appears to occur by the normal semiconservative mechanism. All of these data suggest that replication of UV-damaged templates occurs in vitro as it does in vivo and that this replication results in mutation fixation.  相似文献   

3.
We used a simian virus 40-based shuttle vector plasmid, pZ189, to determine the role of pyrimidine cyclobutane dimers in UV light-induced mutagenesis in monkey cells. The vector DNA was UV irradiated and then introduced into monkey cells by transfection. After replication, vector DNA was recovered from the cells and tested for mutations in its supF suppressor tRNA marker gene by transformation of Escherichia coli carrying a nonsense mutation in the beta-galactosidase gene. When the irradiated vector was treated with E. coli photolyase prior to transfection, pyrimidine cyclobutane dimers were removed selectively. Removal of approximately 90% of the pyrimidine cyclobutane dimers increased the biological activity of the vector by 75% and reduced its mutation frequency by 80%. Sequence analysis of 72 mutants recovered indicated that there were significantly fewer tandem double-base changes and G X C----A X T transitions (particularly at CC sites) after photoreactivation of the DNA. UV-induced photoproducts remained (although at greatly reduced levels) at all pyr-pyr sites after photoreactivation, but there was a relative increase in photoproducts at CC and TC sites and a relative decrease at TT and CT sites, presumably due to a persistence of (6-4) photoproducts at some CC and TC sites. These observations are consistent with the fact that mutations were found after photoreactivation at many sites at which only cyclobutane dimers would be expected to occur. From these results we conclude that UV-induced pyrimidine cyclobutane dimers are mutagenic in DNA replicated in monkey cells.  相似文献   

4.
Perturbations of Simian Virus 40 (SV40) DNA replication by ultraviolet (UV) light during the lytic cycle in permissive monkey CV-1 cells resemble those seen in host cell DNA replication. Formation of Form I DNA molecules (i.e. completion of SV40 DNA synthesis) was more sensitive to UV irradiation than synthesis of replicative intermediates or Form II molecules, consistent with inhibition of DNA chain elongation. The observed amounts of [3H]thymidine incorporated in UV-irradiated molecules could be predicted on the assumption that pyrimidine dimers are responsible for blocking nascent DNA strand growth. The relative proportion of labeled Form I molecules in UV-irradiated cultures rapidly increased to near-control values with incubation after 20 or 40 J/m2 of light (0.9--1.0 or 1.8--2.0 dimers per SV40 genome, respectively). This rapid increase and the failure of Form II molecules to accumulate suggest that SV40 growing forks can rapidly bypass many dimers. Form II molecules formed after UV irradiation were not converted to linear (Form III) molecules by the dimer-specific T4 endonuclease V, suggesting either that there are no gaps opposite dimers in these molecules or that T4 endonuclease V cannot use Form II molecules as substrates.  相似文献   

5.
We have analyzed the structural characteristics of simian virus 40 replicative intermediate DNA produced after UV irradiation and the kinetics of conversion of this intermediate DNA into form I DNA. Replicative intermediate DNA isolated at 30 or 60 min after UV irradiation consists primarily of two species of molecules that sediment in neutral sucrose gradients as either Cairns theta structures or relaxed monomeric circles. Replication forks on the Cairns intermediate DNA are symmetrically located with respect to the origin of replication, ruling out the possibility of asymmetric pauses or blocks to replication fork progression at damage sites. The relaxed circles contain at least one randomly located discontinuity in the daughter strand. Pulse-chase experiments demonstrated that a UV fluence-dependent fraction of the Cairns intermediate DNA progresses through the relaxed circular intermediate before being converted to completed form I molecules. Disappearance of Cairns intermediate DNA occurs at the same rate in irradiated and unirradiated cells, whereas completion of the relaxed circular intermediate DNA occurs at a slow rate, relatively independent of UV fluence. These data support a model for replication of UV-damaged DNA in which replication rapidly continues past damage sites via a gap formation event.  相似文献   

6.
Pyrimidine dimers block simian virus 40 replication forks.   总被引:12,自引:4,他引:8       下载免费PDF全文
UV light produces lesions, predominantly pyrimidine dimers, which inhibit DNA replication in mammalian cells. The mechanism of inhibition is controversial: is synthesis of a daughter strand halted at a lesion while the replication fork moves on and reinitiates downstream, or is fork progression itself blocked for some time at the site of a lesion? We directly addressed this question by using electron microscopy to examine the distances of replication forks from the origin in unirradiated and UV-irradiated simian virus 40 chromosomes. If UV lesions block replication fork progression, the forks should be asymmetrically located in a large fraction of the irradiated molecules; if replication forks move rapidly past lesions, the forks should be symmetrically located. A large fraction of the simian virus 40 replication forks in irradiated molecules were asymmetrically located, demonstrating that UV lesions present at the frequency of pyrimidine dimers block replication forks. As a mechanism for this fork blockage, we propose that polymerization of the leading strand makes a significant contribution to the energetics of fork movement, so any lesion in the template for the leading strand which blocks polymerization should also block fork movement.  相似文献   

7.
Do damage-inducible responses in mammalian cells alter the interaction of lesions with replication forks? We have previously demonstrated that preirradiation of the host cell mitigates UV inhibition of SV40 DNA replication; this mitigation can be detected within the first 30 min after the test irradiation. Here we test the hypotheses that this mitigation involves either (1) rapid dimer removal, (2) rapid synthesis of daughter strands past lesions (trans-dimer synthesis), or (3) continued progression of the replication fork beyond a dimer. Cells preirradiated with UV were infected with undamaged SV40, and the effects of UV upon viral DNA synthesis were measured within the first hour after a subsequent test irradiation. In preirradiated cells, as well as in non-preirradiated cells, pyrimidine dimers block elongation of daughter strands; daughter strands grow only to a size equal to the interdimer distance along the parental strands. There is, within this first hour after UV, no evidence for trans-dimer synthesis, nor for more rapid dimer removal either in the bulk of the parental DNA or in molecules in the replication pool. Progression of the replication forks was analyzed by electron microscopy of replicating SV40 molecules. Dimers block replication-fork progression in preirradiated cells to the same extent as in non-preirradiated cells. These experiments argue strongly against the hypotheses that preirradiation of host cells results in either the rapid removal of dimers, trans-dimer synthesis, or continued replication-fork progression beyond dimers.  相似文献   

8.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

9.
When mammalian cells are irradiated with ultraviolet light, semiconservative DNA replication is inhibited and the length of newly synthesized daughter strands is reduced. We have used the simian virus 40 (SV40) viral system to examine the molecular mechanism by which this inhibition of DNA replication occurs immediately following ultraviolet irradiation. We tested two models for DNA replication-inhibition by using a procedure first developed by Danna, K. J., and D. Nathans (1972, Proc. Natl. Acad. Sci. USA, 69:3097-3100) in which the distribution of 3H-label in segments of newly completed SV40 form-I molecules is measured after short pulse labeling with 3H-thymidine. Our experimental results were compared with those predicted by mathematical models that describe two possible molecular mechanisms of replication inhibition. Our data are best fit by a "blockage" model in which any pyrimidine dimer encountered by the replication fork prevents complete replication of the SV40 genome. An alternative model called "slowdown" in which DNA damage causes a generalized slowdown of replication fork movement on all genomes has more adjustable parameters but does not fit the data as well as the blockage model.  相似文献   

10.
UV inactivation, photoreactivation, and dark repair of Escherichia coli and Cryptosporidium parvum were investigated with the endonuclease sensitive site (ESS) assay, which can determine UV-induced pyrimidine dimers in the genomic DNA of microorganisms. In a 99.9% inactivation of E. coli, high correlation was observed between the dose of UV irradiation and the number of pyrimidine dimers induced in the DNA of E. coli. The colony-forming ability of E. coli also correlated highly with the number of pyrimidine dimers in the DNA, indicating that the ESS assay is comparable to the method conventionally used to measure colony-forming ability. When E. coli were exposed to fluorescent light after a 99.9% inactivation by UV irradiation, UV-induced pyrimidine dimers in the DNA were continuously repaired and the colony-forming ability recovered gradually. When kept in darkness after the UV inactivation, however, E. coli showed neither repair of pyrimidine dimers nor recovery of colony-forming ability. When C. parvum were exposed to fluorescent light after UV inactivation, UV-induced pyrimidine dimers in the DNA were continuously repaired, while no recovery of animal infectivity was observed. When kept in darkness after UV inactivation, C. parvum also showed no recovery of infectivity in spite of the repair of pyrimidine dimers. It was suggested, therefore, that the infectivity of C. parvum would not recover either by photoreactivation or by dark repair even after the repair of pyrimidine dimers in the genomic DNA.  相似文献   

11.
Replicative intermediates in UV-irradiated simian virus 40   总被引:5,自引:0,他引:5  
We have used Simian virus 40 (SV40) as a probe to study the replication of UV-damaged DNA in mammalian cells. Viral DNA replication in infected monkey kidney cells was synchronized by incubating a mutant of SV40 (tsA58) temperature-sensitive for the initiation of DNA synthesis at the restrictive temperature and then adding aphidicolin to temporarily inhibit DNA synthesis at the permissive temperature while permitting pre-replicative events to occur. After removal of the drug, the infected cells were irradiated at 100 J/m2 (254 nm) to produce 6-7 pyrimidine dimers per SV40 genome, and returned to the restrictive temperature to prevent reinitiation of replication from the SV40 origin. Replicative intermediates (RI) were labeled with [3H]thymidine, and isolated by centrifugation in CsCl/ethidium bromide gradients followed by BND-cellulose chromatography. The size distribution of daughter DNA strands in RI isolated shortly after irradiation was skewed towards lengths less than the interdimer spacing in parental DNA; this bias persisted for at least 1 h after irradiation, but disappeared within 3 h, by which time the size of the newly-synthesized DNA exceeded the interdimer distance. No significant excision of dimers from parental strands in either replicative intermediates or Form I (closed circular) DNA molecules was detected. These data are consistent with the hypothesis that replication forks are temporarily blocked by dimers encountered on the leading strand side of the fork, but that daughter strand continuity opposite dimers is eventually established. Evidence was obtained for the generation at late times after irradiation, of Form I molecules in which the daughter DNA strands contain dimers. Thus DNA strand exchange as well as trans-dimer synthesis may be involved in the generation of supercoiled Form I DNA from UV-damaged SV40 replicative intermediates.  相似文献   

12.
Irradiation with UV light results in damage to the DNA of human cells. The most numerous lesions are pyrimidine dimers; however, other lesions are known to occur and may contribute to the overall deleterious effect of UV irradiation. We have observed evidence of a UV-induced lesion other than pyrimidine dimers in the DNA of human cells by measuring DNA strand breaks induced by irradiating with 313-nm light following UV (254-nm) irradiation. These breaks, measured by alkaline sucrose sedimentation, increased linearly with the dose of UV light over the range tested (10-40 J/m2). The breaks cannot be photolytically induced 5 h after a UV dose of 20 J/m2 in normal cells; however, in xeroderma pigmentosum variant cells, the breaks are inducible for up to 24 h after UV irradiation. Xeroderma pigmentosum group A cells in the same 5-h period show an increase in the number of strand breaks seen with 313-nm light photolysis from about 2 to 4 breaks/10(9) dalton DNA. These breaks can then be induced for up to 24 h. These data suggest that, in normal cells, the lesion responsible for this effect is rapidly repaired or altered; whereas, in xeroderma pigmentosum variant cells it seems to remain unchanged. Some change apparently occurs in the DNA of xeroderma pigmentosum group A cells which results in an increase in photolability. These data indicate a deficiency in DNA repair of xeroderma pigmentosum variant cells as well as in xeroderma pigmentosum group A cells.  相似文献   

13.
During normal maturation and majority of pulse-labeled simian virus 40 DNA progresses from chromatin to previrions and virions within 5 h. UV light inhibits this progression. In heavily irradiated cultures (108 J m-2) most of the simian virus 40 DNA synthesized immediately before irradiation remains as chromatin for at least 5 h. This inhibition of maturation seems to be a result of the inhibition of protein synthesis. The data suggest that the pool of proteins required for maturation is sufficient to convert one-third of the simian virus 40 DNA molecules labeled in a 10-min pulse (at 33 h postinfection) from chromatin to previrions and virions and is exhausted within 1 h.  相似文献   

14.
DNA lesions caused by UV radiation are highly recombinogenic. In wild-type cells, the recombinogenic effect of UV partially reflects the processing of UV-induced pyrimidine dimers into DNA gaps or breaks by the enzymes of the nucleotide excision repair (NER) pathway. In this study, we show that unprocessed pyrimidine dimers also potently induce recombination between homologs. In NER-deficient rad14 diploid strains, we demonstrate that unexcised pyrimidine dimers stimulate crossovers, noncrossovers, and break-induced replication events. The same dose of UV is about six-fold more recombinogenic in a repair-deficient strain than in a repair-proficient strain. We also examined the roles of several genes involved in the processing of UV-induced damage in NER-deficient cells. We found that the resolvase Mus81p is required for most of the UV-induced inter-homolog recombination events. This requirement likely reflects the Mus81p-associated cleavage of dimer-blocked replication forks. The error-free post-replication repair pathway mediated by Mms2p suppresses dimer-induced recombination between homologs, possibly by channeling replication-blocking lesions into recombination between sister chromatids.  相似文献   

15.
The incidence of pyrimidine dimer formation and the kinetics of DNA repair in African green monkey kidney CV-1 cells after ultraviolet (UV) irradiation were studied by measuring survival, T4 endonuclease V-sensitive sites, the fraction of pyrimidine dimers in acid-insoluble DNA as determined by thin layer chromatography (TLC), and repair replication. CV-1 cells exhibit a survival curve with extrapolation number n = 7.8 and Do = 2.5 J/m2. Pyrimidine dimers were lost from acid-insoluble DNA more slowly than endonuclease-sensitive sites were lost from or new bases were incorporated into high molecular weight DNA during the course of repair. Growth of CV-1 cultures in [3H]thymidine or X-irradiation (2 or 10 krads) 24 h before UV irradiation had no effect on repair replication induced by 25 J/m2 of UV. These results suggest that pyrimidine dimer excision measurements by TLC are probably unaffected by radiation from high levels of incorporated radionuclides. The endonuclease-sensitive site and TLC measurements can be reconciled by the assumption that pyrimidine dimers are excised from high molecular weight DNA in acid-insoluble oligonucleotides that are slowly degraded to acid-soluble fragments.  相似文献   

16.
We obtained a monoclonal antibody directed against UV-induced DNA damage. Analysis of the antigenic determinant in UV-irradiated DNA recognized by this antibody, 64M-1, revealed that it bound UV-irradiated oligo- or poly-nucleotides containing thymine-thymine or thymine-cytosine sequences. The antibody failed to bind DNA irradiated with 313 nm UV in the presence of acetophenone, which contained predominantly thymine dimers as DNA damage. The binding activity of this antibody to 254-nm UV-irradiated DNA decreased with 313-nm UV irradiation, and the decrease of this binding activity correlated with the decrease of fluorescence corresponding to (6-4) photoproducts. These results suggest that the antigenic determinant recognized by this monoclonal antibody is a (6-4) photoproduct. Using autoradiography with 3H-antibody, we could detect the formation of the (6-4) photoproduct in individual human cells irradiated with 254-nm UV doses as low as 20 J/m2.  相似文献   

17.
18.
Photoreactivation of Escherichia coli after inactivation by a low-pressure (LP) UV lamp (254 nm), by a medium-pressure (MP) UV lamp (220 to 580 nm), or by a filtered medium-pressure (MPF) UV lamp (300 to 580 nm) was investigated. An endonuclease sensitive site (ESS) assay was used to determine the number of UV-induced pyrimidine dimers in the genomic DNA of E. coli, while a conventional cultivation assay was used to investigate the colony-forming ability (CFA) of E. coli. In photoreactivation experiments, more than 80% of the pyrimidine dimers induced by LP or MPF UV irradiation were repaired, while almost no repair of dimers was observed after MP UV exposure. The CFA ratios of E. coli recovered so that they were equivalent to 0.9-, 2.3-, and 1.7-log inactivation after 3-log inactivation by LP, MP, and MPF UV irradiation, respectively. Photorepair treatment of DNA in vitro suggested that among the MP UV emissions, wavelengths of 220 to 300 nm reduced the subsequent photorepair of ESS, possibly by causing a disorder in endogenous photolyase, an enzyme specific for photoreactivation. On the other hand, the MP UV irradiation at wavelengths between 300 and 580 nm was observed to play an important role in reducing the subsequent recovery of CFA by inducing damage other than damage to pyrimidine dimers. Therefore, it was found that inactivating light at a broad range of wavelengths effectively reduced subsequent photoreactivation, which could be an advantage that MP UV irradiation has over conventional LP UV irradiation.  相似文献   

19.
《Mutation research》1987,181(1):9-16
In this review the authors present only their own results. They include the determination of the duration of the different stages of the cell cylce in UV-irradiated barley cells, the effect of different UV doses on the frequency of chromosome aberrations in barley, the increase in UV-induced chromosome aberration frequency induced in barley by caffeine and the effect of UV doses on the induction of pyrimidine dimers and sites sensitive to UV-endonuclease action (ESS) in barley cells and Nicotina tabacum protoplasts. In addition, the excision of pyrimidine dimers and ESS after irradiation with various doses of UV, unscheduled DNA synthesis in N. tabacum protoplasts and the correlation between the induction of pyrimidine dimers in DNA and the frequency of chromosome aberrations are reported. Data demonstrating that photoreactivation decrease the number of DNA lesions and chromosome aberrations induced by UV are also presented.  相似文献   

20.
We are examining the effects of preirradiation of host (monkey) cells upon the replication of UV-damaged SV40. Control cells and cells preirradiated with low fluences (5 or 10 J/m2) of UV were infected with undamaged SV40, and the immediate effects of a subsequent irradiation were determined. UV inhibited total SV 40 DNA synthesis (incorporation of thymidine into viral DNA) in both preirradiated and control cells, but the extent of inhibition was less in the preirradiated cells. A test fluence of 60 J/m2 to SV40 replicating in preirradiated cells reduced synthesis only as much as a test fluence of 25 J/m2 in control cells. The fraction of recently replicated SV40 molecules that re-entered the replication pool and subsequently completed one round of replication in the first 2 h after UV was also decreased less in the preirradiated cells. Thus preirradiation of the host cell mitigates the immediate inhibitory effects of a subsequent UV exposure upon SV40 replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号