首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Mammary tissue was obtained from rabbits at various stages of pregnancy and lactation and used for tissue-slice incubations (to measure the rate of fatty acid synthesis and CO(2) production) and to determine relevant enzymic activities. A biphasic adaptation in fatty acid synthetic capacity during lactogenesis was noted. 2. The first lactogenic response occurred between day 15 and 24 of pregnancy. Over this period fatty acid synthesis (from acetate) increased 14-fold and the proportions of fatty acids synthesized changed to those characteristic of milk fat (77-86% as C(8:0)+C(10:0) acids). 3. The second lactogenic response occurred post partum as indicated by increased rates of fatty acid synthesis and CO(2) production (from acetate and glucose) and increased enzymic activities. 4. Major increases in enzymic activities between mid-pregnancy and lactation were noted for ATP citrate lyase (EC 4.1.3.8), acetyl-CoA synthetase (EC 6.2.1.1), acetyl-CoA carboxylase (EC 6.4.1.2), fatty acid synthetase, glucose 6-phosphate dehydrogenase (EC 1.1.1.49), and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). Smaller increases in activity occurred with glycerol 3-phosphate dehydrogenase (EC 1.1.1.8) and NADP(+)-isocitrate dehydrogenase (EC 1.1.1.42) and the activity of NADP(+)-malate dehydrogenase (EC 1.1.1.40) was negligible at all periods tested. 5. During pregnancy and lactation there was a close temporal relationship between fatty acid synthetic capacity and the activities of ATP citrate lyase (r=0.94) and acetyl-CoA carboxylase (r=0.90).  相似文献   

2.
Abstract— C-6 glial cells in culture were utilized to define the role of glucocorticoid in the regulation of palmitic acid synthesis and the important lipogenic enzymes, fatty acid synthetase and acetyl-CoA carboxylase. Particular emphasis was given to fatty acid synthetase which exhibited more than a 50% reduction in specific activity when cells were exposed to hydrocortisone (10 μg/ml) for 1 week. Coordinate changes in acetyl-CoA carboxylase activity and in palmitic acid (and sterol) synthesis from acetate accompanied the alterations in fatty acid synthetase. Immunochemical techniques were utilized to show that the decrease in synthetase activity involved an alteration in enzyme content, not in catalytic efficiency. The changes in content of fatty acid synthetase were caused by alterations in enzyme synthesis. Glucocorticoids may regulate fatty acid synthetase in C-6 glial cells by a mechanism similar to that suggested for adipose tissue. The inhibition of palmitic acid synthesis may be relevant to other effects of glucocorticoids on developing brain.  相似文献   

3.
1. Mammary-tissue biopsies were obtained from multiparous cows at 30 and 7 days pre partum and 7 and 40 days post partum. Investigations of the effect of lactogenesis on fatty acid and lactose synthesis involved measurements of biosynthetic capacity (tissue-slice incubations in vitro) and activities of relevant enzymes. 2. Fatty acid synthesis from acetate increased over 20-fold from 30 days pre partum to 40 days post partum. Changes in the lipogenic capacity of mammary-tissue slices more closely paralleled increases in the activities of acetyl-CoA carboxylase (EC 6.4.1.2) and acetyl-CoA synthetase (EC 6.2.1.1) than of other enzymes involved in acetate incorporation into fatty acids or in NADPH generation. 3. Lactose biosynthesis by mammary-tissue slices, lactose synthetase activity (EC 2.4.1.22) and alpha-lactalbumin concentration were all negligible at 30 days pre partum but increased 2.5-4-fold between 7 days pre partum and 40 days post partum. Phosphoglucomutase (EC 2.7.5.1), UDP-glucose pyrophosphorylase (EC 2.7.7.9) and UDP-glucose 4-epimerase (EC 5.1.3.2) had substantial activities at 30 days pre partum and increased less dramatically during lactogenesis. 4. Results are consistent with acetyl-CoA carboxylase and perhaps acetyl-CoA synthetase representing the regulatory enzyme(s) in fatty acid synthesis, with lactose synthetase (alpha-lactalbumin) serving a similar function in lactose biosynthesis.  相似文献   

4.
The adaptive synthesis of fatty acid synthetase in the livers of rats fed a fat-free diet following 48 hr of fasting has been studied using immunochemical methods. The development of fatty acid synthetase activity during adaptive synthesis occurs about 3 hr following feeding, whereas the synthesis of material precipitable by anti-fatty acid synthetase serum, as judged by the incorporation of 3H-labeled amino acids into the immunoprecipitate, commenced within 1 hr. Extracts of liver of rats fed a fat-free diet for 1–3 hr following fasting contain increasing amounts of material which competes with purified fatty acid synthetase for antibody binding sites, even though they have no fatty acid synthetase activity. This suggests the presence of enzymatically inactive precursors of fatty acid synthetase in the liver extracts. The incorporation of [14C]pantothenate into fatty acid synthetase during adaptive synthesis follows the same pattern as the development of enzyme activity, indicating that these enzymatically inactive precursors of fatty acid synthetase may represent an apoenzyme which is converted to the enzymatically active holoenzyme by the incorporation of the 4′-phosphopantetheine prosthetic group. The subcellular site of synthesis of fatty acid synthetase was shown to be in the pool of polysomes that are not membrane bound, rather than in the rough endoplasmic reticulum.  相似文献   

5.
6.
1. Orsellinic acid has been detected as a metabolite of Aspergillus fumigatus. 2. The other principal aromatic components of the medium are fumigatin and the quinol, fumigatol. Fumigatol has been shown to be dihydrofumigatin after oxidation to the quinone followed by acetylation. 3. (14)C-labelled 6-methylsalicylic acid can be hydroxylated in A. fumigatus to form orsellinic acid and decarboxylated to give m-cresol. 4. (14)C-labelled 6-methylsalicylic acid is incorporated into fumigatin and fumigatol (1.0-1.5%), but the conversion does not occur until about 2-3 days after supplementation of the medium. At this stage of growth, the organism has already synthesized approx. 20 times as much fumigatol as fumigatin and this ratio is reflected in the much lower specific activity of the quinol. 5. Supplementation of the medium with either orsellinic acid or orcinol, in addition to (14)C-labelled 6-methylsalicylic acid, greatly decreases the latter's incorporation into fumigatin. At the same time, the cultures containing these substances are stimulated to produce another quinone with relatively high specific activity. 6. 6-Methylsalicylic acid has not been detected in the medium of normal cultures. The results indicate that 6-methylsalicylic acid itself is not a direct precursor of fumigatin and fumigatol but that it is converted into a true intermediate, probably after hydroxylation to orsellinic acid. 7. Supplementation of the medium with 6-methylsalicylic acid (15-25mg./200ml.) greatly affects the metabolism of A. fumigatus. Growth is inhibited and the synthesis of fumigatol is markedly depressed in these cultures. The inhibitory effects may possibly be related in some way to the production of m-cresol.  相似文献   

7.
8.
O R Brown  J L Stees 《Microbios》1976,17(67):17-21
A simple assay is described for estimating the activity of the condensation component enzyme (beta-ketoacyl synthetase) of the yeast fatty acids synthetase complex. The radioactivity liberated as 14CO2 from [1,3-14C]malonyl-CoA was trapped in phenethylamine and measured by liquid scintillation spectroscopy. Three enzyme-catalysed steps are involved: acetyl-CoA transacylase, malonyl-CoA transacylase and beta-ketoacyl synthetase; however, beta-ketoacyl synthetase is rate-limiting. beta-Ketoacyl synthetase activity was made independent of subsequent enzyme activities of the complex by excluding NADPH from the assay, thus blocking beta-ketoacyl reductase and preventing fatty acid synthesis. By this assay beta-ketoacyl synthetase activity was about 0.28 of the activity of the complex for fatty acid synthesis, compared with approximately 0.001 for published assays. Several pyridine nucleotides and derivatives were tested after it was discovered that NADH stimulated beta-ketoacyl synthetase activity to a greater extent than could be accounted for by its reactivity in providing a pathway from acetoacetyl-enzyme to fatty acid synthesis. Presumably, the release of acetoacetate from the central sulphydryl of the complex is the rate-limiting step in the assay procedure.  相似文献   

9.
Pigeon liver fatty acid synthetase has been found to catalyze the formation of palmitic acid from malonyl-CoA and NADPH in the absence of acetyl-CoA. Radio-chemical and spectral assays show that the activity of the complex in the absence of acetyl-CoA is about 25–30% of the activity in the presence of this compound. Initial velocities were determined for a series of reactions in which the malonyl-CoA concentration was varied over a range of 5–200 μm at a fixed NADPH concentration of 100μm and vice versa. No inhibitory effects of one substrate over the other were found. However, when the synthesis of fatty acids was studied in the presence of acetyl-CoA, a significant inhibitory effect of malonyl-CoA was observed. It has also been shown that the fatty acid synthetase synthesizes triacetic lactone from malonyl-CoA in the absence of NADPH and acetyl-CoA. No evidence was obtained for the direct decarboxylation of malonyl-CoA to acetyl-CoA in this reaction. Hence it is proposed that decarboxylation of the malonyl moiety bound covalently to 4′-phosphopantetheine occurs to yield acetyl-4′-phosphopantetheine. Further, it is proposed that the acetyl moiety of the latter compound is transferred to the cysteine site of the enzyme complex and that fatty acid synthesis proceeds in the presence of NADPH as proposed by Phillips et al. [Arch. Biochem. Biophys.138, 380 (1970)]. In the absence of NADPH triacetic lactone is formed.  相似文献   

10.
Mutants of Saccharomyces cerevisiae defective in acyl-CoA synthetase (EC 6.2.1.3) were isolated. The mutants were concentrated by the radiation-suicide technique with the use of tritiated palmitic acid. Selection of the mutants was based on the premise that acyl-CoA synthetase activity would become indispensable when yeast cells in which fatty acid synthesis de novo is blocked are grown in a medium supplemented with fatty acid. The mutant strains isolated exhibited low acyl-CoA synthetase activity in vitro. Furthermore, they accumulated markedly more of the incorporated palmitic acid in the nonesterified form than did the wild- type strain. Some of the mutants showed thermosensitive acyl-CoA synthetase activity, indicating a mutation of the structural gene of the enzyme. Genetic studies on these mutants indicated that their phenotype resulted from a single, recessive mutation of a nuclear gene, designated faa 1 (fatty acid activation).  相似文献   

11.
Triiodothyronine (T3) effects on the activity, rate of synthesis and mRNA content of the key lipogenic enzyme, fatty acid synthetase, were studied in differentiating ob17 preadipocytes cloned from ob/ob mouse epididymal adipose tissue. During differentiation in the presence of insulin, a 6–10-fold increase in both fatty acid synthetase specific activity and synthesis rate were reproducibly observed and occurred concomitantly. The relative synthesis rate exhibited a progressive elevation from 0.5% at confluence to a maximum level of 2% in the presence of insulin. The rate of the enzyme degradation determined by pulse-chase experiments was similar in differentiating cells and insulin-untreated cells of the same age (t12, 40–42 h). Furthermore, the increase in the enzyme synthesis rate was preceded by a progressively elevating amount of mRNA encoding for this protein as detected by translation in a reticulocyte lysate cell-free system. It is thus suggested that the increment in total and neosynthesized fatty acid synthetase in essentially due to an increased enzyme synthesis, reflecting an increased relative content of its specific mRNA. T3 included at a physiological concentration (1.5 nM) in the culture medium enhanced significantly both enzyme synthesis and its specific mRNA. The most important T3 effect was an acceleration of both processes, a stimulation of the mRNA level being detected as early as day 3 post-confluence and maximum at day 5 when the effect on the synthetase synthesis rate and activity began to be enhanced. This suggests that T3 would mainly affect fatty acid synthetase as a pretranslational level.  相似文献   

12.
1. The effect of exogenous lipases on fatty acid synthesis from [14C]malonyl-CoA by the microsomal and soluble fractions from germinating peas was studied. 2. Addition of phospholipase A2 or the lipase from Rhizopus arrhizus had no effect on total fatty acid synthesis by the soluble fraction but caused severe inhibition of that by the microsomal fraction. 3. The addition of enzymes with phospholipase activity particularly inhibited the microsomal stearate elongase. 4. Control studies indicated that the phospholipase-induced inhibition of fatty acid synthesis was due to the location of fatty acid synthetase, palmitate elongase and stearate elongase on the outside of the microsomal vesicles. 5. Experiments with a trypsin-like proteinase showed that approximately half the microsomal fatty acid synthesis was resistant to proteolysis. 6. Although addition of exogenous phospholipases had no effect on total fatty acid synthesis by the soluble fraction, it did increase alpha-hydroxylation of newly-formed palmitate and stearate. 7. The results provide further evidence for differences between the soluble and particulate fatty acid synthetase and palmitate elongase activities of germinating pea.  相似文献   

13.
Mammals express multiple isoforms of acyl-CoA synthetase (ACSL1 and ACSL3-6) in various tissues. These enzymes are essential for fatty acid metabolism providing activated intermediates for complex lipid synthesis, protein modification, and beta-oxidation. Yeast in contrast express four major ACSLs, which have well-defined functions. Two, Faa1p and Faa4p, are specifically required for fatty acid transport by vectorial acylation. Four ACSLs from the rat were expressed in a yeast faa1delta faa4delta strain and their roles in fatty acid transport and trafficking characterized. All four restored ACS activity yet varied in substrate preference. ACSL1, 4, and 6 were able to rescue fatty acid transport activity and triglyceride synthesis. ACSL5, however, was unable to facilitate fatty acid transport despite conferring robust oleoyl-CoA synthetase activity. This is the first study evaluating the role of the mammalian ACSLs in fatty acid transport and supports a role for ACSL1, 4, and 6 in transport by vectorial acylation.  相似文献   

14.
Chen H  Kim HU  Weng H  Browse J 《The Plant cell》2011,23(6):2247-2262
Malonyl-CoA is the precursor for fatty acid synthesis and elongation. It is also one of the building blocks for the biosynthesis of some phytoalexins, flavonoids, and many malonylated compounds. In plants as well as in animals, malonyl-CoA is almost exclusively derived from acetyl-CoA by acetyl-CoA carboxylase (EC 6.4.1.2). However, previous studies have suggested that malonyl-CoA may also be made directly from malonic acid by malonyl-CoA synthetase (EC 6.2.1.14). Here, we report the cloning of a eukaryotic malonyl-CoA synthetase gene, Acyl Activating Enzyme13 (AAE13; At3g16170), from Arabidopsis thaliana. Recombinant AAE13 protein showed high activity against malonic acid (K(m) = 529.4 ± 98.5 μM; V(m) = 24.0 ± 2.7 μmol/mg/min) but little or no activity against other dicarboxylic or fatty acids tested. Exogenous malonic acid was toxic to Arabidopsis seedlings and caused accumulation of malonic and succinic acids in the seedlings. aae13 null mutants also grew poorly and accumulated malonic and succinic acids. These defects were complemented by an AAE13 transgene or by a bacterial malonyl-CoA synthetase gene under control of the AAE13 promoter. Our results demonstrate that the malonyl-CoA synthetase encoded by AAE13 is essential for healthy growth and development, probably because it is required for the detoxification of malonate.  相似文献   

15.
In continuing studies of patulin biosynthesis, the first enzyme of the pathway, 6-methylsalicylic acid synthetase, was found to be far more labile than were the later enzymes of the pathway. Attempts were made to stabilize 6-methylsalicylic acid synthetase in vitro. The combined addition of the cofactor NADPH, the substrates acetyl-CoA and malonyl-CoA, the reducing agent dithiothreitol, and the proteinase inhibitor phenylmethylsulfonyl fluoride to cell-free extracts was found to prolong the half-life of the enzyme as much as 12-fold. This suggested that proteolysis and the conformational integrity of the enzyme may play an important role in controlling the duration of antibiotic biosynthesis in vivo. This was in agreement with the finding that the intracellular proteinase content of antibiotic-producing cells of Penicillium urticae rapidly increased just before the loss of 6-methylsalicylic acid synthetase content. These in vitro stabilization studies have provided some insight into the metabolic conditions that may stabilize these enzymes in vivo, and into possible ways of extending the life of these catalysts.  相似文献   

16.
High purity fatty acid synthetase mRNA has been prepared from rat liver. The translational purity of the mRNA preparation was at least 27% as judged by the percentage of the radioactivity incorporated into acid-insoluble material that was precipitated by anti-fatty acid synthetase antibody. The specific activity of the mRNA was 220-times greater than that reported previously from this laboratory [1]. The large increase in the specific activity was achieved by the repeated use of high resolution linear-log sucrose density gradient centrifugation and the removal of 28 S rRNA by Sepharose 4B chromatography, as well as by the optimization of the K+ concentration (160 mM) in the reticulocyte lysate translation system. The mRNA preparation showed a single major band on agarose gel electrophoresis under denaturing conditions, and the translational activity of the fatty acid synthetase mRNA on the gel was found to coincide with this band. The molecular weight of the fatty acid synthetase mRNA is 2.5·106 Da. The mRNA directed the synthesis of fatty acid synthetase with a molecular weight indistinguishable from that of the authentic enzyme subunit (Mr = 240 000). The copurification of the translation product and authentic enzyme revealed that the fatty acid synthetase polypeptides synthesized in the reticulocyte lysate system are assembled in vitro into dimers, the native form of the enzyme.  相似文献   

17.
  • 1.1. The extent of fatty acid synthesis from [1-14C]acetate in liver slices was reduced 6-fold when eels were fasted for 1–7 weeks and 20-fold when fasted for 39 weeks; thereafter hepatic lipogenesis seemed to remain constant for up to 95 weeks of fasting.
  • 2.2. After a 1–3 week fast some hepatic enzyme activities were reduced (acetyl-CoA carboxylase decreased 2-fold and fatty acid synthetase declined 5-fold), while others remained unchanged (glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, α-glycerol phosphate dehydrogenase as well as malic enzyme and ATP-citrate lyase).
  • 3.3. The optimum temperature for measuring both total lipid synthesis and lipogenic enzyme activity in eel liver was found to be 30°C.
  相似文献   

18.
Fatty acid CoA ligase (AMP) (EC 6.2.1.3) specific activity was increased approximately 2-fold in microsomes prepared from isolated rat fat cells incubated with 400 microunits of insulin/ml (2.9 nM) for 45 to 60 min compared to paired controls using an assay based on the conversion of [3H]oleic acid to [3H]oleoyl-CoA. Similar insulin-dependent increases in microsomal fatty acid CoA ligase specific activities were observed using an assay based on the conversion of [3H]CoA to fatty acyl-[3H]CoA. Fatty acid CoA ligase activity was predominately (about 80%) associated with the microsomal fraction. The insulin-dependent increase in microsomal fatty acid CoA ligase specific activity was maximal in 2 to 5 min at 400 microunits/ml. At 10 min, 80 to 100 microunits of insulin/ml caused a maximal increase in fatty acid CoA ligase specific activity. Similar apparent Km values for ATP, CoA, and fatty acid were observed for fatty acid CoA ligase activity in microsomal preparations from control and insulin-exposed cells. These data suggest that fatty acid CoA ligase activity is regulated in adipose tissue by insulin. Such regulation may serve to promote the capture of fatty acid and thereby, triacylglycerol synthesis in adipose tissue.  相似文献   

19.
In an attempt to clarify why the brain oxidizes fatty acids poorly or not at all, the activities of beta-oxidation enzymes present in rat brain and rat heart mitochondria were measured and compared with each other. Although the apparent Km values and chain-length specificities of the brain and heart enzymes are similar, the specific activities of all but one brain enzyme are between 4 and 50% of those observed in heart mitochondria. The exception is 3-ketoacyl-CoA thiolase (EC 2.3.1.16) whose specific activity in brain mitochondria is 125 times lower than in heart mitochondria. The partially purified brain 3-ketoacyl-CoA thiolase was shown to be catalytically and immunologically identical with the heart enzyme. The low rate of fatty acid oxidation in brain mitochondria, estimated on the basis of palmitoylcarnitine-supported respiration and [1-14C]palmitoylcarnitine degradation to be less than 0.5 nmol/min/mg of protein, may be the consequence of the low activity of 3-ketoacyl-CoA thiolase. Inhibition of [1-14C]palmitoylcarnitine oxidation by 4-bromocrotonic acid proves the observed oxidation of fatty acids in brain to be dependent on 3-ketoacyl-CoA thiolase and thus to occur via beta-oxidation. Since the reactions catalyzed by carnitine palmitoyltransferase (EC 2.3.1.21) and acyl-CoA synthetase (EC 6.2.1.3) do not seem to restrict fatty acid oxidation in brain, it is concluded that the oxidation of fatty acids in rat brain is limited by the activity of the mitochondrial 3-keto-acyl-CoA thiolase.  相似文献   

20.
Male chicks were fed a commercial ration and were given drinking water which contained 0, 50, 100, 150, 200 or 300 mug of mercury/ml as mercuric chloride from hatching to 3 weeks of age. In one experiment, the mercuric chloride was administered by injection into the abdominal cavity rather than in the drinking water. At 3 weeks the chicks were killed, and the livers were removed and weighed. The activity of fatty acid synthetase in the 800 X gav supernatant fractions of the liver homogenates and in vivo incorporation of [14C]acetate into liver and carcass fatty acids and respiratory 14CO2 was determined as indicated. Administration of mercury at a treatment level of 300 mug/ml of drinking water depressed growth, feed and water consumption, liver weight, hepatic fatty acid synthetase activity, and in vivo incorporation of [14C]acetate into liver and carcass fatty acids, and increased the production of respiratory 14CO2 as compared with controls. In experiments in which graded doses of mercury were administered, body weights, liver weights, and feed and water intakes of the chicks receiving 0, 50 and 100 mug of mercury/ml of drinking water were similar to each other, but these parameters were severely depressed by 200 mug of mercury/ml of drinking water. Mercury caused a dose-related decrease of fatty acid synthetase activity. Incorporation of [14C]acetate into carcass fatty acid was depressed by 50 and 200 mug of mercury/ml of drinking water; incorporation into liver fatty acids and production of respiratory 14CO2 was not affected by mercury. Intra-abdominal injection of 6 mg of mercury/100 g body weight (as mercuric chloride) into well alimented chicks depressed hepatic fatty acid synthetase activity at 1 h post-injection. The data are consistent with the hypothesis that a portion of the effects of mercury on fatty acid synthesis are direct rather than a secondary effect of inanition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号