首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Novel aerobic granular sludge membrane bioreactor (GMBR) was established by combining aerobic granular sludge technology with membrane bioreactor (MBR). GMBR showed good organics removal and simultaneous nitrification and denitrification (SND) performances for synthesized wastewater. When influent total organic carbon (TOC) was 56.8-132.6 mg/L, the TOC removal of GMBR was 84.7-91.9%. When influent ammonia nitrogen was 28.1-38.4 mg/L, the ammonia nitrogen removal was 85.4-99.7%, and the total nitrogen removal was 41.7-78.4%. Moreover, batch experiments of sludge with different particle size demonstrated that: (1) flocculent sludge under aerobic condition almost have no denitrification capacity, (2) SND capacity was caused by the granular sludge, and (3) the denitrification rate and total nitrogen removal efficiency were enhanced with the increased particle size. In addition, study on the sludge morphology stability in GMBR showed that, although some granular sludge larger than 0.9 mm disaggregated at the beginning of operation, the granular sludge was able to maintain the stability of its granular morphology, and at the end of operation, the amount of granular sludge (larger than 0.18 mm) stabilized in GMBR was more than 56-62% of the total sludge concentration. The partial disaggregation of large granules is closely associated with the change of operating mode from sequencing batch reactor (SBR) system to MBR system.  相似文献   

2.
3.
Xu X  Liu G  Zhu L 《Bioresource technology》2011,102(22):10340-10345
A novel anaerobic/aerobic/anoxic (AOA) process is proposed to realize denitrifying phosphorous removal in this study, and the characteristic of the AOA process is transferring part of the anaerobic mixed liquor to the post-anoxic zone for providing the carbon source needed for denitrification. The AOA process was operated for 3 months, and the average removal efficiencies of NH4+-N, TN and PO4(3-)-P were 93.0±3.1%, 70.3±2.9% and 87.3±11.8%, respectively. A mass balance analysis indicated that 0.49±0.02 g VSS(-1) d(-1) of PO4(3-)-P and 0.23±0.04 g VSS(-1) d(-1) of NO3--N were simultaneously removed in the anoxic zone, and it is speculated that denitrifying phosphorous removal occurred in the AOA process. Furthermore, 0.24±0.06 g VSS(-1) d(-1) of TN was removed in the aerobic zone via simultaneous nitrification and denitrification (SND). The results demonstrate that the multi-zone structure of the AOA process favors the enhancement of denitrifying phosphorous removal and SND for municipal wastewater treatment.  相似文献   

4.
This study evaluated the effect of sludge age on simultaneous nitrification and denitrification in a membrane bioreactor treating black water. A membrane bioreactor with no separate anoxic volume was operated at a sludge age of 20 days under low dissolved oxygen concentration of 0.1-0.2 mg/L. Its performance was compared with the period when the sludge age was adjusted to 60 days. Floc size distribution, apparent viscosity, and nitrogen removal differed significantly, together with different biomass concentrations: nitrification was reduced to 40% while denitrification was almost complete. Modelling indicated that both nitrification and denitrification kinetics varied as a function of the sludge age. Calibrated values of half saturation coefficients were reduced when the sludge age was lowered to 20 days. Model simulation confirmed the validity of variable process kinetics for nitrogen removal, specifically set by the selected sludge age.  相似文献   

5.
Nitrogen and phosphorus removal from wastewater is now considered essential for the protection of our waterways. Biological nutrient removal processes are generally the most efficient and cost-effective solution to achieve this. While the principles of these processes are well known, intriguing and useful details are being discovered with the recent advances in bio-process engineering and microbial sciences. Phosphorus accumulating organisms have only been identified in recent years, and there are now competing glycogen accumulating organisms being found in biological phosphorus removal systems. These can possibly explain the reasons for the variable phosphorus removal performance of certain systems, and their control can help in the development of more stable and better performing processes. Detailed investigations of the traditional nitrification-denitrification systems, but also of novel developments for nitrogen removal, reveal a more complex and diverse range of processes involved in these transformations. Increasingly, linked phosphorus and nitrogen removal processes are being developed, creating further opportunities to optimise the technologies. However, this might also bring certain risks such as the potential to produce the greenhouse-gas nitrous oxide (N2O) rather than nitrogen gas as the final denitrification product. A range of recent developments in these areas is covered in this paper.  相似文献   

6.
Isolated roots of Lycopersicon esculentum Mill., cultured in axenic conditions were starved of sulphate or phosphate, and uptake capacities for the respective oxyanion-transport systems were observed for several days after sulphate or phosphate withdrawal. Sulphate-uptake capacity of the intact roots, measured in a 20-min period, increased from a control level of 100 nmol · g–1 · h–1 to 1100 nmol · g–1 · h–1 in 10 d, and phosphate-uptake capacity increased from 500 to 1400 nmol · g–1 · h–1 over 4 d. Newly synthesised polypeptides of these root cultures were pulse-labelled in vivo for 2 h, by adding [3H]leucine to the culture medium. The tissue was immediately homogenised and soluble and membrane fractions were prepared. A highly purified plasma-membrane fraction was separated from the crude microsomal membrane fraction using an aqueous two-phase partitioning technique. All fractions were analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and autoradiography. A 28-kilodalton (kDa) soluble polypeptide, and 36-, 43-, and 47-kDa plasma-membrane polypeptides were observed to have increased labelling after 4 d of sulphate deprivation. Longer periods resulted in additional polypeptides with increased [3H]leucine incorporation. The synthesis of a 25-kDa membrane polypeptide and a 65-kDa soluble polypeptide was increased after 4 d of phosphate deprivation. Two-dimensional electrophoresis afforded greater resolution of the plasmamembrane polypeptides, confirming increased synthesis of the 36-kDa polypeptide and the presence of the 28-kDa polypeptide in the plasma-membrane preparation from sulphate-starved roots. These polypeptides were also observed in protein-stained two-dimensional gels as low-abundant protein components of the plasmamembrane fraction. It is suggested that the 36-kDa polypeptide may be a component of the plasma-membrane sulphate-transport system and that the 25-kDa polypeptide may be a component of a phosphate-transport system.Abbreviations kDa kilodalton(s) - PAGE polyacrylamide gel electrophoresis - pI isoelectric point - SDS Sodium dodecyl sulphate This work was supported by the Agricultural and Food Research Council via grants-in-aid to Long Ashton Research Station. We are also grateful for discussions with our colleagues D.T. Clarkson (LARS) and J.-C. Davidian (ENSA/INRA, Montpellier).  相似文献   

7.
We have synthesized 2- and 8-monosubstituted and 2,8-disubstituted derivatives of the cytokinin 6-(3-methyl-2-butenylamino)purine (N6-isopentenyladenine) and have shown the dependence of growth-promoting activity in the tobacco bioassay upon the position, number, and type of substituent. The representative substituent groups were MeS, Me, MeSO2, C6H5CH2S, HS and Cl. The 8-methyl derivative was exceptional in being more active than the unsubstituted parent compound. In general, substitution in the 8-position decreases activity less than substitution in the 2-position, with the exception of the electron-attracting methylsulfonyl. Substitution in both the 2- and 8-positions lowers the activity more than substitution at either single position on the adenine nucleus, with the exception of the 2,8-dimethyl derivative. The chloro and methylthio derivatives show activity in the same range as the methyl derivatives, and the mercapto compounds, which exist mainly as CS tautomers, show somewhat less activity than the corresponding methylthio compounds. Bulky (C6H5CH2S and MeSO2) and strongly electron-attracting (MeSO2) substituents cause relatively great reduction in cytokinin activity.  相似文献   

8.
Seedling establishment in saline conditions is crucial for plant survival and productivity. This study was performed to elucidate the biochemical and physiological mechanisms involved with the recovery and establishment of cashew seedlings subjected to salinity. The changes in the Na+ levels and K/Na ratios, associated with relative water content, indicated that osmotic effects were more important than salt toxicity in the inhibition of seedling growth and cotyledonary protein mobilization. Salinity (50 mM NaCl) induced a strong delay in protein breakdown and amino acid accumulation in cotyledons, and this effect was closely related to azocaseinolytic and protease activities. In parallel, proline and free amino acids accumulated in the leaves whereas the protein content decreased. Assays with specific inhibitors indicated that the most important proteases in cotyledons were of serine, cysteine and aspartic types. Proteomic analysis revealed that most of the cashew reserve proteins are 11S globulin-type and that these proteins were similarly degraded under salinity. In the late establishment phase, the salt-treated seedlings displayed an unexpected recovery in terms of leaf growth and N mobilization from cotyledon to leaves. This recovery coordinately involved a great leaf expansion, decreased amino acid content and increased protein synthesis in leaves. This response occurred in parallel with a prominent induction in the cotyledon proteolytic activity. Altogether, these data suggest that a source–sink mechanism involving leaf growth and protein synthesis may have acted as an important sink for reserve mobilization contributing to the seedling establishment under salinity. The amino acids that accumulated in the leaves may have exerted negative feedback to act as a signal for the induction of protease activity in the cotyledon. Overall, these mechanisms employed by cashew seedlings may be part of an adaptive process for the efficient rescue of cotyledonary proteins, as the cashew species originates from an environment with N-poor soil and high salinity.  相似文献   

9.
Albinism represents a group of genetic disorders with a broad spectrum of hypopigmentary phenotypes dependent on the genetic background of the patients. Oculocutaneous albinism (OCA) patients have little or no pigment in their eyes, skin and hair, whereas ocular albinism (OA) primarily presents the ocular symptoms, and the skin and hair color may vary from near normal to very fair. Mutations in genes directly or indirectly regulating melanin production are responsible for different forms of albinism with overlapping clinical features. In this study, 27 albinistic individuals from 24 families were screened for causal variants by a PCR-sequencing based approach. TYR, OCA2, TYRP1, SLC45A2, SLC24A5, TYRP2 and SILV were selected as candidate genes. We identified 5 TYR and 3 OCA2 mutations, majority in homozygous state, in 8 unrelated patients including a case of autosomal recessive ocular albinism (AROA). A homozygous 4-nucleotide novel insertion in SLC24A5 was detected in a person showing with extreme cutaneous hypopigmentation. A potential causal variant was identified in the TYRP2 gene in a single patient. Haplotype analyses in the patients carrying homozygous mutations in the classical OCA genes suggested founder effect. This is the first report of an Indian AROA patient harboring a mutation in OCA2. Our results also reveal for the first time that mutations in SLC24A5 could contribute to extreme hypopigmentation in humans.  相似文献   

10.
Natural polysaccharides, derived from biomass feedstocks, marine resources, and microorganisms, have been attracting considerable attention as benign and environmentally friendly substitutes for synthetic polymeric products. Besides many other applications, these biopolymers are rapidly emerging as viable alternatives to harmful synthetic flocculating agents for the removal of contaminants from water and wastewater. In recent years, a great deal of effort has been devoted to improve the production and performance of polysaccharide bio-based flocculants. In this review, current trends in preparation and chemical modification of polysaccharide bio-based flocculants and their flocculation performance are discussed. Aspects including mechanisms of flocculation, biosynthesis, classification, purification and characterization, chemical modification, the effect of physicochemical factors on flocculating activity, and recent applications of polysaccharide bio-based flocculants are summarized and presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号