首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The efficiency of individual genetic tagging was determined by using passive integrated transponders (PIT) as a comparative conventional tagging method. Fifty-five common dace Leuciscus leuciscus were captured in the wild, PIT tagged and fin clipped (for DNA analysis). Thirty fish were recaptured on three occasions and tissue samples were collected. Using 18 microsatellite loci, 79-94% of the recaptures were correctly assigned. Experience with scoring L. leuciscus microsatellites led to more individuals correctly assigned. Allowing matches that differed by one or two alleles resulted in 100% of all recaptures successfully assigned irrespective of the observer. Reducing the set of loci to five to six loci appropriately selected did not affect the assignment rate, demonstrating that costs can be subsequently reduced. Despite their potential benefits, the application of genetic tags for teleosts has been limited. Here, it was demonstrated that genetic tagging could be applied, and a clear guideline (flowchart) is provided on how this method can be developed for teleosts and other organisms, with subsequent practical applications to ecology, evolutionary biology and conservation management.  相似文献   

2.
3.
4.
Immunologists need to establish a vibrant dialogue with young people. This is not only important for the continuation and progress of biomedical research, but it can also contribute to the fight against diseases such as HIV/AIDS and can help young people to make informed decisions about lifestyle, medical treatment and ethical issues. Good communication skills are crucial to any scientific career, and the lessons learned from talking with non-scientists can also be useful when writing scientific papers and grants. This article is a personal account of one scientist's experience of communicating biomedical science to young people.  相似文献   

5.
Understanding the genetics of how organisms adapt to changing environments is a fundamental topic in modern evolutionary ecology. The field is currently progressing rapidly because of advances in genomics technologies, especially DNA sequencing. The aim of this review is to first briefly summarise how next generation sequencing (NGS) has transformed our ability to identify the genes underpinning adaptation. We then demonstrate how the application of these genomic tools to ecological model species means that we can start addressing some of the questions that have puzzled ecological geneticists for decades such as: How many genes are involved in adaptation? What types of genetic variation are responsible for adaptation? Does adaptation utilise pre-existing genetic variation or does it require new mutations to arise following an environmental change?  相似文献   

6.
Hallmarks of cancer: the next generation   总被引:29,自引:0,他引:29  
Hanahan D  Weinberg RA 《Cell》2011,144(5):646-674
The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.  相似文献   

7.
8.
Bead-based microfluidic immunoassays: the next generation   总被引:1,自引:0,他引:1  
Microfluidic devices possess many advantages like high throughput, short analysis time, small volume and high sensitivity that fulfill all the important criteria of an immunoassay used for clinical diagnoses, environmental analyses and biochemical studies. These devices can be made from a few different materials, with polymers presently emerging as the most popular choice. Other than being optically clear, non-toxic and cheap, polymers can also be easily fabricated with a variety of techniques. In addition, there are many polymer surface modification methods available to improve the efficiency of these devices. Unfortunately, current microfluidic immunoassays have limited multiplexing capability compared to flow cytometric assays. Flow cytometry employ the use of encoded microbeads in contrast with normal or paramagnetic microbeads applied in current microfluidic devices. The encoded microbead is the key in providing multiplexing capability to the assay by allowing multi-analyte analysis. Using several unique sets of code, different analytes can be detected in a single assay by tracing the identity of individual beads. The same principle could be applied to microfluidic immunoassays in order to retain all the advantages of a fluidic device and significantly improve multiplexing capability.  相似文献   

9.
10.
It is the ultimate goal of tissue engineering: an autologous tissue engineered vascular graft (TEVG) that is immunologically compatible, nonthrombogenic, and can grow and remodel. Currently, native vessels are the preferred vascular conduit for procedures such as coronary artery bypass (CABG) or peripheral bypass surgery. However, in many cases these are damaged, have already been harvested, or are simply unusable. The use of synthetic conduits is severely limited in smaller diameter vessels due to increased incidence of thrombosis, infection, and graft failure. Current research has therefore energetically pursued the development of a TEVG that can incorporate into a patient's circulatory system, mimic the vasoreactivity and biomechanics of the native vasculature, and maintain long-term patency.  相似文献   

11.
Biological electrosprays are rapidly becoming a robust means by which to engineer living organisms for applications ranging from tissue repair to developmental biology. We previously reported the ability to electrospray living organisms without compromising their viability, but found it challenging to achieve stability in the jetting of these organisms as a result of the chemical properties of the living cellular suspensions. Jet stability is required for the generation of a near-mono distribution of droplets, which is necessary for the development of electrospray technology as a "drop and place" biotechnique. Recently, we determined the conditions needed to achieve jet stability and were able to generate droplets with a near-mono distribution (<50 microm). In this communication, we elucidate the relationship between jet behaviour and droplet size under stable jetting conditions, with a view to further reducing the droplet size to deposit a single living cell within a droplet. We believe that this level of resolution will make electrospray jetting superior amongst the jet-based biotechnologies presently being developed for the engineering of biological architectures comprised of living cells.  相似文献   

12.
13.
Carroll KC 《Anaerobe》2011,17(4):170-174
Clostridium difficile (C. difficile) causes 25-30% of cases of antibiotic associated diarrhea and most cases of pseudomembranous colitis. Patients presenting with diarrhea after hospitalization for 3 or more days should be tested for C. difficile. There are many options available for testing, each of which has inherent advantages and disadvantages. Most laboratories perform toxin testing using an enzyme immunoassay method. In general these tests have sensitivities ranging from 60 to 70% and specificities of 98%. When using these methods, symptomatic patients with negative tests should be tested by another more sensitive method. Until recently, cell culture cytotoxicity neutralization assays (CCNAs) were considered the gold standard in the U.S. A two-step algorithm using an EIA for glutamate dehydrogenase detection followed by testing positives using CCNA, offered an improved alternative until the availability of molecular assays. Although early studies that compared the GDH assay to CCNA demonstrated high sensitivity and negative predictive values, more recent comparisons to toxigenic culture and PCR have shown the sensitivity to be in the mid to high 80's. When testing using a sensitive assay, repeat testing is not cost-effective. Outbreaks caused by a toxin variant epidemic strain have renewed interest in bacterial culture. Toxigenic culture has emerged as the new gold standard against which newer assays should be compared. However, there is no agreed upon standard method for culture performance. At least 4 FDA cleared nucleic acid amplification assays are available to clinical laboratories and several of these have been well evaluated in the literature. Because these assays detect a gene that encodes toxin and not the toxin itself it is important that laboratories test only patients with diarrhea. These molecular assays have been shown to be superior to toxin EIAs, CCNA and 2-step algorithms, but not to toxigenic culture. More studies are needed to assess the impact of molecular tests on treatment and nosocomial spread of Clostridium difficile infections.  相似文献   

14.

Background

A growing trend in the biomedical community is the use of Next Generation Sequencing (NGS) technologies in genomics research. The complexity of downstream differential expression (DE) analysis is however still challenging, as it requires sufficient computer programing and command-line knowledge. Furthermore, researchers often need to evaluate and visualize interactively the effect of using differential statistical and error models, assess the impact of selecting different parameters and cutoffs, and finally explore the overlapping consensus of cross-validated results obtained with different methods. This represents a bottleneck that slows down or impedes the adoption of NGS technologies in many labs.

Results

We developed DEApp, an interactive and dynamic web application for differential expression analysis of count based NGS data. This application enables models selection, parameter tuning, cross validation and visualization of results in a user-friendly interface.

Conclusions

DEApp enables labs with no access to full time bioinformaticians to exploit the advantages of NGS applications in biomedical research. This application is freely available at https://yanli.shinyapps.io/DEAppand https://gallery.shinyapps.io/DEApp.
  相似文献   

15.
Meng F  Hackenberg M  Li Z  Yan J  Chen T 《PloS one》2012,7(3):e34394
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. The latest version of the miRBase database (Release 18) includes 1,157 mouse and 680 rat mature miRNAs. Only one new rat mature miRNA was added to the rat miRNA database from version 16 to version 18 of miRBase, suggesting that many rat miRNAs remain to be discovered. Given the importance of rat as a model organism, discovery of the completed set of rat miRNAs is necessary for understanding rat miRNA regulation. In this study, next generation sequencing (NGS), microarray analysis and bioinformatics technologies were applied to discover novel miRNAs in rat kidneys. MiRanalyzer was utilized to analyze the sequences of the small RNAs generated from NGS analysis of rat kidney samples. Hundreds of novel miRNA candidates were examined according to the mappings of their reads to the rat genome, presence of sequences that can form a miRNA hairpin structure around the mapped locations, Dicer cleavage patterns, and the levels of their expression determined by both NGS and microarray analyses. Nine novel rat hairpin precursor miRNAs (pre-miRNA) were discovered with high confidence. Five of the novel pre-miRNAs are also reported in other species while four of them are rat specific. In summary, 9 novel pre-miRNAs (14 novel mature miRNAs) were identified via combination of NGS, microarray and bioinformatics high-throughput technologies.  相似文献   

16.
Schon EA  Przedborski S 《Neuron》2011,70(6):1033-1053
Adult-onset neurodegenerative disorders are disabling and often fatal diseases of the nervous system whose underlying mechanisms of cell death remain unknown. Defects in mitochondrial respiration had previously been proposed to contribute to the occurrence of many, if not all, of the most common neurodegenerative disorders. However, the discovery of genes mutated in hereditary forms of these enigmatic diseases has additionally suggested defects in mitochondrial dynamics. Such disturbances can lead to changes in mitochondrial trafficking, in interorganellar communication, and in mitochondrial quality control. These new mechanisms by which mitochondria may also be linked to neurodegeneration will likely have far-reaching implications for our understanding of the pathophysiology and treatment of adult-onset neurodegenerative disorders.  相似文献   

17.
18.
The effectiveness and accuracy of detection using environmental DNA (eDNA) is dependent on understanding the influence laboratory methods such as DNA extraction and PCR strategies have on detection probability. Ideally choice of sampling and extraction method will maximize eDNA yield and detection probability. Determining the survey effort required to reach a satisfactory detection probability (via increased PCR replicates or more sampling) could compensate for a lower eDNA yield if the sampling and extraction method has other advantages for a study, species or system. I analysed the effect of three different sampling and extraction methods on eDNA yield, detection probability and PCR replication for detecting the endangered freshwater fish Macquaria australasica from water samples. The impact of eDNA concentration, PCR strategy, target amplicon size and two marker regions: 12S (a mitochondrial gene) and 18S (a nuclear gene) was also assessed. The choice of sampling and extraction method and PCR strategy, rather than amplicon size and marker region, had the biggest effect on detection probability and PCR replication. The PCR replication effort required to achieve a detection probability of 0.95, ranged from 2 to 6 PCR replicates depending on the laboratory method used. As all methods yielded eDNA from which M. australasica was detected using the three target amplicons, differences in eDNA yield and detection probability between the three methods could be mitigated by determining the appropriate PCR replication effort. Evaluating the effect sampling and extraction methods will have on the detection probability and determining the laboratory protocols and PCR replication required to maximize detection and minimize false positives and negatives is a useful first step for eDNA occupancy studies.  相似文献   

19.
Prebiotics and synbiotics: towards the next generation   总被引:9,自引:0,他引:9  
Recent research in the area of prebiotic oligosaccharides and synbiotic combinations with probiotics is leading towards a more targeted development of functional food ingredients. Improved molecular techniques for analysis of the gut microflora, new manufacturing biotechnologies, and increased understanding of the metabolism of oligosaccharides by probiotics are facilitating development. Such developments are leading us to the time when we will be able to rationally develop prebiotics and synbiotics for specific functional properties and health outcomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号