首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

2.
When male rats were given a single dose of cadmium (Cd) (3.58 mg CdCl2·H2O/kg, ip) 72 hr prior to sacrifice, the testicular 7-ethoxyresorufin O-deethylase (EROD) and glutathione S-transferase (GST) activities toward the substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethacrynic acid (EAA), 1,2-epoxy-3-(p-nitrophenoxy)-propane (EPNP), and cumene hydroperoxide (CHPx) decreased significantly as compared to controls. Cd also inhibited reduced glutathione (GSH) level while increasing the lipid peroxidation (LP) level significantly. When the animals were given a single dose of nickel (Ni) (59.5 mg NiCl2·6H2O/kg, ip) 16 hr prior to sacrifice, significant decreases were observed in EROD and GST activities toward CDNB, EAA, EPNP, and CHPx, and GSH level. No significant alterations were noted in DCNB GST activity and LP level by Ni. For the combined treatment, rats received the single dose of Ni 56 hr after the single dose of Cd and were killed 16 hr later. In these animals, lesser depressions were observed on EROD activity and LP level than those of Cd alone. The combination of metals significantly inhibited GST activities and GSH level but not to a greater degree than noted by Cd or Ni alone. Plasma testosterone levels of Cd-, Ni-, and combination-treated rats decreased significantly compared to controls. The strongest depression was achieved by Cd alone. Cd, both alone and in combination with Ni, increased the tissue Ni uptake significantly. Ni, however, did not produce such an effect on the tissue uptake of Cd in either case. Cd treatment caused interstitial edema and coagulation necrosis in seminiferous tubules and also caused fibrinoidal necrosis in vascular endothelium. Ni treatment did not produce any pathological testicular alterations compared to controls. Combined treatment produced fewer pathological alterations (i.e., only interstitial edema) than that of Cd treatment. These results reveal that the combination of Cd and Ni does not have a synergistic effect on testicular xenobiotic metabolizing enzymes, and in contrast, Ni has an ameliorating effect on pathological disturbances caused by Cd alone in the rat testis.  相似文献   

3.
This work aims at evaluating the accumulation of cadmium (Cd) and zinc (Zn) (trace elements) in the organs of young tomato plants (Lycopersicon esculentum L. var. Rio Grande) and their effects on the rate of chlorophyll and enzyme activities involved in the antioxidant system: catalase (CAT), glutathion-S-transferase (GST) and peroxysase ascorbate (APX). Plants previously grown on a basic nutrient solution were undergoing treatment for 7 days, either by increasing concentrations of CdCl2 or ZnSO4 (0, 50, 100, 250, 500 μM) or by the combined concentrations of Cd and Zn (100/50, 100/100, 100/250, 100/500 μM). The results concerning the determination of metals in the various compartments of tomato plants as a function of increasing concentrations of Cd or Zn, suggest a greater accumulation of Cd and Zn in the roots compared to leaves. The combined treatment (Cd/Zn) interferes with the absorption of the two elements according to their concentrations in the culture medium. The presence of Zn at low concentrations (50 μM of Zn/100 μM Cd) has little influence on the accumulation of Cd in the roots and leaves, while the absorption of these two elements in the leaves increases and decreases in roots when their concentrations are equivalent (100/100 μM) compared to treatment alone. When the concentration of Zn is higher than that of Cd (500 μM of Zn/100 μM Cd) absorption of the latter is inhibited in the roots while increasing their translocation to the leaves. Meanwhile, the dosage of chlorophylls shows that they tend to decrease in a dose-dependent for both treatments (Cd or Cd/Zn), however, treatment with low concentrations of Zn (50 and 100 μM) stimulates chlorophyll synthesis. However, treatment with different concentrations of Cd seems to induce the activity of the enzymes studied (CAT, APX, GST). It is the same for treatment with different concentrations of Zn and this particularly for the highest concentrations. Finally, the combined treatment (Zn/Cd) also appears to cause enzyme inductions: CAT, APX and GST.  相似文献   

4.
5.
Hepatic glutathione S-transferase (GST) activities towards 1-chloro-3,4-dinitrobenzene (DNCB), 3,4-dichloronitrobenzene (DCNB), sulfobromophthalein (BSP), p-nitrobenzyl chloride (NBC), ethacrynic acid (EA), trans-4-phenyl-3-buten-2-one (TPBO) and 1,2-epoxy-3-(p-nitrophenoxy)propane (ENPP) were determined in mice, rats, rabbits and guinea-pigs during ageing and after pretreatment with enzyme inducers. Variations were observed in the developmental patterns and in the phenobarbital-, benzo(a)pyrene-, pregnenolone-16 alpha-carbonitrile-, butylated hydroxyanisole-, trans-stilbene oxide-inducibility of hepatic GST activities in the same species towards different substrates. For example, in rats GST activities for EA, DCNB and TPBO increased respectively, 2.3-, 4.8- and 25-fold during age-development, and after treatment with TSO 1.2-, 3.6- and 1.3-fold. Species differences were found in the maturation and in the inducibility of GST activities. For instance, GST activity toward EA at birth is mature in guinea pigs but not in the other species; phenobarbital treatment increased GST activities in mice and rats but not in rabbits and guinea-pigs; treatment with trans-stilbene oxide enhanced GST activity for TPBO 4.5-fold in mice but not at all in rats. It is concluded that hepatic glutathione conjugation exhibits functional heterogeneity which may be due to species dependent variations in the responsiveness of GST isoenzymes to endogenous and exogenous influences.  相似文献   

6.
To investigate the antioxidative response of glutathione metabolism in Urtica dioica L. to a cadmium induced oxidative stress, activities of glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GSH-Px), content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation (LPO), and also accumulation of Fe, Zn, Mn, Cu besides Cd were determined in the roots, stems, and leaves of plants exposed to 0 (control), 0.045, and 0.09 mM CdCl2 for 58 h. Whereas the Cd content continuously increased in all organs, the Fe, Zn, Mn, and Cu content decreased in dependence on the applied Cd concentration and incubation time. The Cd treatment resulted in increased GR and GST activities in all organs, however, GSH-Px activity was dependent on Cd concentration and plant organ. The GSH/GSSG ratio maintained above the control level in the stems at both Cd concentrations. The LPO was generally close to the control values in the roots and stems but it increased in the leaves especially at 0.09 mM Cd.  相似文献   

7.
The hepatic cytosolic glutathione S-transferase (GST) activity in four strains of the mouse and one strain of the rat was studied with the substrates 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), ethachrynic acid (ETHA), cumene hydroperoxide (CU) and atrazine as the in vitro substrates. In the mouse, significant gender, strain and age-related differences in the GST activity towards CDNB and atrazine were found between adolescent and sexually mature males and females of the CD-1, C57BL/6, DBA/2 and Swiss-Webster strains, and the differences were larger with atrazine as the substrate. With DCNB and CU a similar tendency was observed, however not significant for all strains. The GST activity towards ETHA was also gender and strain specific, but revealed no age-related differences. The herbicide atrazine seems to be a useful substrate in the study of strain and age-related differences in the mouse GST class Pi.  相似文献   

8.
A high Cd-tolerant dark septate endophyte (DSE), Exophiala pisciphila, was inoculated into maize (Zea mays L.) roots under Cd stress. The Cd content, enzymes activity and thiol compound content relevant to glutathione (GSH) metabolism in maize leaves were analyzed. The Cd content in maize shoots increased with increasing Cd stress, but the DSE significantly reduced the Cd content at the 40?mg/kg Cd treatment. Cd stress increased the enzyme activity of glutathione reductase (GR), glutathione S-transferase (GST) and glutathione peroxidase (GSH-Px) as well as the thiol compound contents of sulfur, thiols (-SH) and oxidized glutathione (GSSG). The content of reduced GSH and the GSH/GSSG ratio reached a peak at the 5?mg/kg Cd treatment but then decreased with increasing Cd stress. Furthermore, the DSE significantly enhanced the GR and GSH-Px activity and increased the contents of -SH and GSH under low Cd stress (5 and 10?mg/kg), but decreased the γ-glutamylcysteine synthetase and GST activity under high Cd stress (20 and 40?mg/kg). Highly positive correlations between the Cd content with enzymes activity and enzymes activity with thiol compound content were observed. Results indicated that DSE played a role in activating GSH metabolism in maize leaves under Cd stress.  相似文献   

9.
Liver and gills of roach (Rutilus rutilus) and silver carp (Hypophthalmichthys molitrix) were examined for glutathione S-transferases (GSTs) contents and their substrate specificity and capacity to biotransform microcystin-LR (MC-LR). GSTs and other glutathione (GSH) affine proteins were purified using a GSH-agarose matrix and separated by anionic chromatography (AEC). Substrate specificities were determined photometrical for 1-chloro-2,4-dinitrobenzene (CDNB), 1,2-dichloro-4-nitrobenzene (DCNB), 4-nitrobenzyl chloride (pNBC) and ethacrynic acid (ETHA). Biotransformation rate of MC-LR was determined by high performance liquid chromatography (HPLC). Roach exhibited different hepatic and branchial GST activities for used substrates (DNB, pNBC and DCNB) compared to silver carp but not for ethacrynic acid. It suggests that, both fish species have similar amount of pi and/or alpha class, which were the dominant GST classes in liver and gills. Gills of both fish species contained a higher number of GST isoenzymes, but with lower activities and ability of MC-LR biotransformation than livers. GST isoenzymes from roach had higher activity to biotransform MC-LR (conversion rate ranging up to 268 ng MC-LR min? 1 mL? 1 hepatic enzyme) than that isolated from silver carp. Without any prior contact to MC-LR or another GST inducer, roach seems to be better equipped for microcystin biotransformation than silver carp.  相似文献   

10.
《Journal of Asia》2002,5(1):49-53
This experiment was carried out to compare the differences in biochemical enzyme activity on the selective insecticide toxicity between the two species of aphid, Aphis citricola van der Goot and Myzus malisuctus Matsumura, and their predator, Harmonia axyridis Pallas. Esterase activities between the two species of aphids and between the two stages of H. axyridis were significant different. Glutathione S-traasferase (GST) activity toward 1-chloro-2, 4-dinitrobenzene (CDNB) was much higher than 1, 2-dichloro-4-nirobenzene (DCNB) in all species tested. No DCNB conjugation was detected in A. citricola and M. malisuctus. The predator, H. axyridis, had much higher GST activity than the preys, A. citricola and M. malisuctus. GST activity toward CDNB in H. axyridis adult was highest, even 6.2-fold higher activity than H. axyridis larva. M. malisuctus had much higher GST activity than A. citricola. The degree of acetylcholinesterase (AChE) inhibition by phosphamidon among all three species tested was significantly varied. The concentration of phosphamidon required for 50% AChE inhibition was lowest in H. axyridis larva, while highest in M. malisuctus. There fore, elevated GST activity and target-site insensitivity may be largely associated with the differential susceptibility between larva and adult of H. axyridis. However, differential susceptibility between A. citricola and M. malisuctus may be due to other various biochemical mechanisms responsible for the multiple selective toxicity, including elevated GST activity and target-site insensitivity.  相似文献   

11.
Plants of Miscanthus sinensis (cv. Giganteus) were grown in hydroponics for three months in nutrient solution with 0, 2.2, 4.4 and 6.6 μM CdNO3. Growth parameters, catalase (CAT), guaiacol peroxidase (POD), ascorbate peroxidase (APX) and superoxide dismutase (SOD) activities were analysed in leaves and roots collected after 1-and 3-month exposure. Dry biomass of all miscanthus organs was affected by Cd concentration both after 1-and 3-month exposure. No visible symptoms of Cd toxicity were observed in shoots and rhizomes of plants grown in presence of Cd. In contrast, roots became shorter and thicker and the whole root system more dense and compact already after one month of treatment with 6.6 μM Cd. The lower Cd concentration increased the enzymes activities after 3 months in leaves and only after 1-month in roots, while a decrease in activity was observed at higher Cd concentrations.  相似文献   

12.
GST activities against 1-Chloro-2,4-dinitrobenzene (CDNB) and 1,2-dichloro-4-nitrobenzene (DCNB) were measured in isolated and cultured adult rat hepatocytes. Within 24 h in culture, both GST activities decreased to about 70% and either stabilized at this level (CDNB) or recovered (DCNB) to the initial level. Use of hyaluronidase in addition to collagenase during the isolation of the cells strongly reduced both activities and its stimulation by various drugs for up to 168 h. The hormones insulin, glucagon, triiodothyronine, estradiol, testosterone, and progesterone did not affect GST activity, while dexamethasone showed some interference. In the presence of dexamethasone the activity against CDNB was mainly stimulated by the combination of methylcholanthrene (MC) and phenobarbital (PB) to about 260% within 168 h. The activity against DCNB was stimulated predominantly by MC alone reaching 170% after 168 h. Quantification of the GST subunits Ya, Yb1 and Yp by an ELISA technique revealed a strong decrease of Ya, a transient increase of Yb1 after 24 h followed by a moderate decrease, and a stable low level of the transformation marker Yp during cultivation. The level of Ya was markedly induced by PB, particularly in combination with MC. The level of Yb1 was equally induced by MC or PB with no synergistic effect. Yp was not affected by these drugs. None of the hormones affected the level of these GST subunits. These results indicate that the physiological type of regulation of the GSTs is maintained during primary culture and no signs of dedifferentiation or transformation are observed. Furthermore, they demonstrate that the interaction of drugs and hormones and their inducing potential can be efficiently studied in the cultured hepatocytes.Abbreviations ABTS 2,2-Azino-bis(3-ethylbenzthiazoline-6-sulfonate) - CDNB I-Chloro-2,4-dinitrobenzene - DCNB 1,2-dichloro-4-nitrobenzene; DEX, dexamethasone - DMSO dimethylsulfoxide - GST glutathione Stransferase - MC methylcholanthrene - N, NIC nicotinamide - -NF -naphthoflavone - PB phenobarbital - PBS phosphate buffered saline  相似文献   

13.
The behavior of glutathione reductase (GR, EC 1.6.4.2) activity and isoforms were analyzed in wheat (Triticum aestivum L.) leaves and roots exposed to a chronic treatment with a toxic cadmium (Cd) concentration. A significant growth inhibition (up to 55%) was found in leaves at 7, 14 and 21 days, whereas roots were affected (51%) only after three weeks. Wheat plants grown in the presence of 100microM Cd showed a time-dependent accumulation of this metal, with Cd concentration being 10-fold higher in roots than in leaves. Nevertheless, lipid peroxidation was augmented in leaves in all experiments, but not in roots until 21 days. Cadmium treatment altered neither the GR activity nor the isoform pattern in the leaves. However, GR activity increased 111% and 200% in roots at 7 and 14 days, respectively, returning to control levels after 21 days. Three GR isoforms were found in roots of control and treated plants, two of which were enhanced by Cd treatment at 7 and 14 days, as assessed by activity staining on native gels. The changes in the isoform pattern modified the global kinetic properties of GR, thereby decreasing significantly (2.5-fold) the Michaelis constant (K(m)) value for oxidized glutathione. Isozyme induction was not associated with an enhancement of GR mRNA and protein expression, indicating that post-translational modification could occur. Our data demonstrated that up-regulation of GR activity by the induction of distinctive isoforms occurs as a defense mechanism against Cd-generated oxidative stress in roots.  相似文献   

14.
Indian mustard (Brassica juncea L. cv. Vitasso) plants exposed to 10, 30, 50 and 100 μM of Cd for 5 d in hydroponic culture were analysed with reference to the distribution of Cd2+, the accumulation of biomass and antioxidants and antioxidative enzymes in leaves. Cd induced a decrease in plant biomass. The maximum accumulation of Cd occurred in roots followed by stems and leaves. Cd induced a decrease in catalase (CAT) and guiacol peroxidase (GPX) activities but an increase in ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) activities. Enhancement in dehydroascorbate reductase (DHAR) activity was also at 10 μM Cd. Glutathione reductase (GR) activity showed pronounced stimulation after all treatments, but glutathione S-transferase (GST) and glutathione peroxidase (GPOX) activities decreased. The effectiveness of ascorbate-glutathione cycle (AGC) was determined by the ratio of ascorbate to H2O2. This ratio decreased in the Cd-treated leaves which indicated that the cycle was disordered.  相似文献   

15.
Antioxidant and detoxifying fish enzymes as biomarkers of river pollution   总被引:4,自引:0,他引:4  
The activity of several antioxidant and detoxifying enzymes, superoxide dismutase SOD , GSH peroxidase GSHPx , GSSG reductase GSR and GSH S transferase GST , the contents of thiobarbituric acid reactive substances TBARS , and the SOD and GST isoenzyme patterns were studied in the livers of chubs Leuciscus cephalus from reference river areas and polluted urban sites. Livers of polluted fish contained higher concentrations of transition metals, especially copper and iron. Total GSHPx activity was 1.8 fold higher in the polluted fish than in reference animals, while the SOD and GSR activities and the TBARS content were not significantly changed. Three new SOD isoforms pI 4.45, 5.1, 5.2 and a higher intensity of the band pI 4.2 were observed after isoelectrofocusing of polluted fish extracts. Total GST activity was higher in fish from polluted areas. The GST isoenzyme pattern was studied using subunit specific substrates DCNB, EPNP, EA, NPB, NBC and by Western blot using antibodies specific to rat GST subunits 1, 8 Alpha class , 3 Mu class and 7 Pi class . Reference and polluted fish lacked cross reactivity towards Alpha class GSTs. Reference fish displayed weaker cross reactivity towards CST 7 and 2.3 fold lower activity with EA, while higher cross reaction with GST 3 was observed in polluted fish.  相似文献   

16.
Pea (Pisum sativum L. cv. Azad) plants exposed to 4 and 40 microM of Cd for 7 d in hydroponic culture were analysed with reference to the distribution of metal, the accumulation of biomass and the metal's effects on antioxidants and antioxidative enzymes in roots and leaves. Cd-induced a decrease in plant biomass. The maximum accumulation of Cd occurred in roots followed by stems and leaves. An enhanced level of lipid peroxidation and an increased tissue concentration of hydrogen peroxide (H2O2) in both roots and leaves indicated that Cd caused oxidative stress in pea plants. Roots and leaves of pea plants responded differently to Cd with reference to the induction of enhanced activities of most of the enzymes monitored in the present study. These differential responses to Cd were further found to be associated with levels of Cd to which the plants were exposed. Cd-induced enhancement in superoxide dismutase (SOD) activity was more at 40 microM than at 4 microM in leaves. While catalase (CAT) prominently increased in leaves both at 4 and 40 microM Cd, ascorbate peroxidase (APX) showed maximum stimulation at 40 microM Cd in roots. Enhancement in glutathione reductase (GR) activity was also more at 40 microM than at 4 microM Cd in roots. While glutathione peroxidase (GPOX) activity decreased in roots and remained almost unmodified in leaves, glutathione S-transferase (GST) showed pronounced stimulation in both roots and leaves of pea plants exposed to 40 microM Cd. Increased activities of antioxidative enzymes in Cd-treated plants suggest that they have some additive function in the mechanism of metal tolerance in pea plants.  相似文献   

17.
18.
《Insect Biochemistry》1991,21(4):421-433
Glutathione S-transferase (GST) isozymes were purified from the GG strain of Aedes aegypti, a strain having ≥4-fold higher total GST activity compared to the wild-type lab strain. Purification involved S-hexyl-glutathione affinity chromatography in high salt buffer, and GST specific elution with S-(p-bromobenzyl)-glutathione. Final purification was accomplished on DEAE-Sepharose. Two isozymes, GST-1b and GST-2 were purified using this procedure, and an additional isozyme, GST-1a, was partially purified. The GST-2 isozyme has one of the highest specific activities reported for a GST, with a specific activity of 739 μmol/min/mg using 1-chloro-2,4-dinitrobenzene (CDNB), and 16.4 μmol/min/mg using 3,4-dichloronitrobenzene (DCNB) as substrates. GST-2, GST-1a, and GST-1b were analyzed for amino acid composition and subjected to N-terminal sequencing. All three GSTs showed amino acid differences, especially among the nonpolar and polar amino acids. The amino acid composition of GST-1b was found to be more similar to GST 1-1 from Drosophila melanogaster than to GST-2 or GST-1a from Aedes aegypti. Only GST-2 gave N-terminal sequence data, raising the possibility that GST-1a and 1b are N-terminally blocked. The A. aegypti GST-2 showed amino acid sequence identity or similarity in all but one residue between residue numbers 31 through 41 compared to the D. melanogaster and Musca domestica GST 1-1 isozymes. The pattern of GST isozyme expression was analyzed in various tissues and stages of development of the GG and wild type strains using isozyme-specific antisera and substrates. GST-1a was constitutively overexpressed in all tissues examined in the GG strain compared to the wild type strain. The expression of GST-1b was similar in both strains for all tissues and developmental stages examined. GST-2 was constitutively overexpressed in head, thorax and abdomen, but was not detected in ovaries of the GG strain. These results suggest that elevated GST activity in the GG strain is due to constitutive overexpression of GST-2 and GST-1a. GST-1a, GST-1b and GST-2 apparently are the products of 3 independently regulated genes and appear to be expressed in a tissue-specific manner.  相似文献   

19.
The effects of the heavy metal Cd in Malus xiaojinensis were investigated using hydroponic cultures. Chlorophyll and Fe concentrations in young leaves were markedly decreased by Cd treatment, although Fe concentration was significantly enhanced in the roots. A comparative examination of the Fe-deficiency responses due to Fe deficiency and Cd treatment was also performed. Both Fe deficiency and Cd treatment induced responses similar to those of Fe-deficiency in M. xiaojinensis, including acidification of the rhizosphere, enhanced Fe(III) chelate reductase activity, and upregulation of the Fe-deficiency-responsive genes MxIRT1 and MxFRO2-Like. However, the Fe-deficiency responses induced by Cd treatment were different in intensity and timing from those induced by Fe deficiency.  相似文献   

20.
The activity of several antioxidant and detoxifying enzymes, superoxide dismutase SOD, GSH peroxidase GSHPx, GSSG reductase GSR and GSH S transferase GST, the contents of thiobarbituric acid reactive substances TBARS, and the SOD and GST isoenzyme patterns were studied in the livers of chubs Leuciscus cephalus from reference river areas and polluted urban sites. Livers of polluted fish contained higher concentrations of transition metals, especially copper and iron. Total GSHPx activity was 1.8 fold higher in the polluted fish than in reference animals, while the SOD and GSR activities and the TBARS content were not significantly changed. Three new SOD isoforms pI 4.45, 5.1, 5.2 and a higher intensity of the band pI 4.2 were observed after isoelectrofocusing of polluted fish extracts. Total GST activity was higher in fish from polluted areas. The GST isoenzyme pattern was studied using subunit specific substrates DCNB, EPNP, EA, NPB, NBC and by Western blot using antibodies specific to rat GST subunits 1, 8 Alpha class, 3 Mu class and 7 Pi class. Reference and polluted fish lacked cross reactivity towards Alpha class GSTs. Reference fish displayed weaker cross reactivity towards CST 7 and 2.3 fold lower activity with EA, while higher cross reaction with GST 3 was observed in polluted fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号