首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39°) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39°) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39° impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included.  相似文献   

2.
This study aims to investigate the mixing characteristics of a transparent sludge simulant in a mechanically agitated model digester using flow visualisation technique. Video images of the flow patterns were obtained by recording the progress of an acid–base reaction and analysed to determine the active and inactive volumes as a function of time. The doughnut-shaped inactive region formed above and below the impeller in low concentration simulant decreases in size with time and disappears finally. The ‘cavern’ shaped active mixing region formed around the impeller in simulant solutions with higher concentrations increases with increasing agitation time and reaches a steady state equilibrium size, which is a function of specific power input. These results indicate that the active volume is jointly determined by simulant rheology and specific power input. A mathematical correlation is proposed to estimate the active volume as a function of simulant concentration in terms of yield Reynolds number.  相似文献   

3.
Xanthan gum fermentation represents a good model for the study of the mixing of rheologically complex culture broths. Most of the previous work on power consumption dealt with ‘standard’, single impellers and used model fluids to simulate xanthan broths. This work describes the characterization of three dual-impeller combinations (D/T = 0·53) for the mixing of dehydrated—reconstituted fermentation broths of Xanthomonas campestris that had matched rheology to the actual broths. The bottom impeller was a Rushton turbine (RT) and the top impeller was another RT, a 45° pitched blade turbine (PT) or an A-310 Lightnin mixer (A310). The experiments were carried out in a tank of 0·0094 m3 working volume equipped with an air bearing dynamometer. The power was measured in a wide range of xanthan concentrations (5–40 kg m−3) in aerated (0·25, 0·5 and 1·0 vvm) and unaerated conditions. Unaerated power number (Po) vs. Reynolds number (Re) curves showed similar trends for the three combinations. Exponents close to −1 were obtained in the laminar region. A minimum in Po (Pomin) occurred at Re = 30–40, then increasing to a plateau value which was evident at Re> 200. In the transition region Pomin values were 4·3 (RT and RT), 3·6 (RT and PT) and 2·4 (RT and A310). The aerated power data for (RT and PT) and (RT and A-310) showed higher torque instabilities than the dual RT combinations at higher xanthan concentrations. The higher the xanthan concentrations, the higher the drop in power and the less important the effect of the aeration rate. Among the combinations tested, when using Rushton turbines, the well-mixed ‘cavern’ reached the tank wall (i.e., fluid motion was observed) at the lowest volumetric power input. High  相似文献   

4.
Anaerobic digestion of animal waste: waste strength versus impact of mixing   总被引:6,自引:0,他引:6  
We studied the effect of mode of mixing (biogas recirculation, impeller mixing, and slurry recirculation) and waste strength on the performance of laboratory scale digesters. The digesters were fed with 5% and 10% manure slurry, at a constant energy supply per unit volume (8 W/m3). The experiments were conducted in eight laboratory scale digesters, each having a working volume of 3.73 L, at a controlled temperature of 35+/-2 degrees C. Hydraulic retention time (HRT) was kept constant at 16.2 days, resulting in a total solids (TS) loading rate of 3.08 g/Ld and 6.2 g/Ld for 5% and 10% manure slurry feeds, respectively. Results showed that the unmixed and mixed digesters performed quite similarly when fed with 5% manure slurry and produced biogas at a rate of 0.84-0.94 L/Ld with a methane yield of 0.26-0.31 L CH4/g volatile solids (VS) loaded. This was possibly because of the low solids concentration in the case of 5% manure slurry, where mixing created by the naturally produced gas might be sufficient to provide adequate mixing. However, the effect of mixing and the mode of mixing became prominent in the case of the digesters fed with thicker manure slurry (10%). Digesters fed with 10% manure slurry and mixed by slurry recirculation, impeller, and biogas recirculation produced approximately 29%, 22% and 15% more biogas than unmixed digester, respectively. Deposition of solids inside the digesters was not observed in the case of 5% manure slurry, but it became significant in the case of 10% manure slurry. Therefore, mixing issue becomes more critical with thicker manure slurry.  相似文献   

5.
The higher ethanol titer inevitably requires higher solids loading during the simultaneous enzymatic saccharification and fermentation (SSF) using lignocellulose as the feedstock. The mixing between the solid lignocellulose and the liquid enzyme is crucially important. In this study, a bioreactor with a novel helical impeller was designed and applied to the SSF operation of the steam explosion pretreated corn stover under different solids loadings and different enzyme dosages. The performances using the helical impeller and the common Rushton impeller were compared and analyzed by measuring rheological properties and the mixing energy consumption. The results showed that the new designed stirring system had better performances in the saccharification yield, ethanol titer, and energy cost than those of the Rushton impeller stirring. The mixing energy consumption under different solids loadings and enzyme dosages during SSF operation were analyzed and compared to the thermal energy in the ethanol produced. A balance for achieving the optimal energy cost between the increased mixing energy cost and the reduced distillation energy cost at the high solids loading should be made. The potentials of the new bioreactor were tested under various SSF conditions for obtaining optimal ethanol yield and titer. Biotechnol. Bioeng. 2010. 105: 718–728. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Blend times and power consumptions were determined for different arrangements of two equal diameter impellers, a high efficiency A310 and a “Dumbo Ear” impeller with three large, “elephant ear” blades designed for low shear agitation. A 9 l round-bottomed, unbaffled bioreactor was used in these studies. Blend times were taken as the time for the disappearance of the pink color of a basic solution of phenolphthalein on neutralization by excess acid, and the power consumption was obtained from torque measurements. The mixing results show that the Dumbo Ear impeller gives shorter blend times than the A310?at equal rotational speeds for most of the conditions studied. As expected, the Dumbo Ear impeller consumes more power than the A310?at the same rotational speed, due to its large area blades. However, the Dumbo Ear impeller also gives shorter blend times than the A310?at equal power consumptions.  相似文献   

7.
A general mathematical model that predicts the flow fields in a mixed-flow anaerobic digester was developed. In this model, the liquid manure was assumed to be a non-Newtonian fluid, and the flow governed by the continuity, momentum, and k-epsilon standard turbulence equations, and non-Newtonian power law model. The commercial computational fluid dynamics (CFD) software, Fluent, was applied to simulate the flow fields of lab-scale, scale-up, and pilot-scale anaerobic digesters. The simulation results were validated against the experimental data from literature. The flow patterns were qualitatively compared for Newtonian and non-Newtonian fluids flow in a lab-scale digester. Numerical simulations were performed to predict the flow fields in scale-up and pilot-scale anaerobic digesters with different water pump power inputs and different total solid concentration (TS) in the liquid manure. The optimal power inputs were determined for the pilot-scale anaerobic digester. Some measures for reducing dead and low velocity zones were proposed based upon the CFD simulation results.  相似文献   

8.
The effect of fermentor hydrodynamics on gellan fermentation kinetics and rheological properties of the culture broth were studied using various mixing and mass transfer conditions. Different impeller systems, such as a helical ribbon (HR250), Rushton turbines (RT600) and a pitched-blade turbine combined with an in-flow turbine (CT600) were tested along with extra oxygen supply (HR250Ox) or reduced nitrogen amount in the culture medium (HR250N). The highest gellan productions (around 13 g/l of native gellan) were observed when oxygen transfer capacity was good (i.e. HR250Ox, HR250N, CT800 and RT600). The volumetric power input was found to be a good tool to evaluate the gellan synthesis progress especially with the helical ribbon impeller where no stagnant zone formation occurred. Macromixing conditions affected the rheological properties of the final broth. For instance, the highly heterogeneous conditions (with RT600) led to a more shear-thinning broth with a lower yield stress value than the most homogeneous conditions (with HR250Ox). Good correlations between yield stress value and gellan concentration were established with respect to the fermentation pattern.  相似文献   

9.
A multi stage high rate biomethanation process with novel self mixed anaerobic digester (SMAD) was developed in the present study to reduce the hydraulic residence time (HRT), increase the volatile solids (VS) loading rate, improve the VS destruction efficiency and enhance the methane yield. Specific design features of SMAD were useful in mixing the digester contents without consuming power and de-alienated the problem of scum formation. In the first phase, poultry litter having 10% total solids (TS) was subjected to high rate biomethanation in multi stage configuration (SMAD-I and II in series with UASB reactor). It was observed that gross VS reduction of 58%, gross methane yield of 0.16 m3 kg−1 (VS reduced) and VS loading rate of 3.5 kg VS m−3 day−1 at HRT of 13 days was obtained. In the second phase SMAD-II was bypassed from the process scheme keeping the other parameters same as in the first phase. The results obtained were not as encouraging as in the first phase. The study showed that multi stage configuration with SMAD design improved the anaerobic digestion process efficiency of poultry litter.  相似文献   

10.
From the performance analysis of the anaerobic digestion system at the Regina Wastewater Treatment Plant, it was found that the anaerobic digestion system at the Regina plant was generally operated in a stable condition as indicated by pH, volatile acids and alkalinity levels. The operation of the anaerobic digestion system was not optimal because of the low volatile solids concentration and low volatile solids loading rate, especially because of high HRT. Two options, thickening the primary sludge and increasing the volatile solids loading rate, were recommended for the optimal operation of the digestion system. After examining a number of kinetic models, it was found that the Chen-Hashimoto model could be used to predict the volumetric methane production rate and the first-order model could be used to predict the efficiency of volatile solids reduction. The study showed that utilization of digester gas for power production was the best alternative for the excess digester gas. 13.3% of the electrical demand and 35.5% of the plant's total energy could be met based on digester gas wasted, assuming 25% as the conversion efficiency.  相似文献   

11.
Studies on the performance of a laboratory scale upflow anaerobic solids removal (UASR) digester were carried out using sand-laden cow manure slurries having total solids (TS) concentration as 50 and 100 g/l. Hydraulic retention time (HRT) was maintained as 32.4 days, which resulted in the volatile solids (VS) loading rates of 1 and 1.64 g/l d. The UASR system was designed to remove sand from the manure slurry, while anaerobically digesting biodegradable solids inside a single reactor. To enhance the contact of microorganisms and substrate, the liquor from the top of the digester was recirculated through the bed of settled solids at its bottom. Volatile solids reduction through this process was observed to be 62% and 68% in the case of feed slurries having TS concentration as 50 and 100 g/l (referred in the text as 5% and 10% feed slurries), respectively. The methane production rates were observed to be 0.22 and 0.38 l/l d, while methane yield was 0.21 and 0.27 l CH4/g VS loaded, for 5% and 10% feed slurries, respectively. This indicates that the increase in the VS loading had a positive impact on methane production rate and methane yield. It would be of interest to study the performance of a UASR digester at higher solids loadings and with longer solids retention times. Nonetheless, the presented study showed that sand-laden manure slurries can be successfully digested in a UASR digester producing methane energy equivalent to 4 kW h per m3 of digester volume per day.  相似文献   

12.
This investigation was undertaken with the objective to compare experimentally the performance of four different mixing devices for the production of the polysaccharide pullulan with Aureobasidium pullulans (2552). Fermentations were performed using identical bioreactors with respectively an assembly of three Rushton turbines (RTB), a helical ribbon impeller (HR) and two different reciprocating plates (RPB1, RPB2). Each mixing vessel had identical geometry and working volume (18 L). These four fermentations were performed with an equal level of power input per unit volume (1000?W/m3) and gas flow rate (0.5 vvm, 9 L/min). For each system, the evolution of biomass, polysaccharide concentration, dissolved oxygen and agitation speed or frequency were recorded as a function of time along with the rheological properties of the culture broths. The type of mixing device used had a significant impact on the rate of biomass production and on polysaccharide physical properties. However, the rate of polysaccharide production appears to be less sensitive to the bioreactor design. The overall productivity, which represents the ability of micro-organisms to convert rapidly substrate into biomass and polysaccharide, was maximised using the RPB2 system. The quality of the synthesised polysaccharide, in terms of viscosity producing power, was highest using the HR system but the overall productivity was very low. Thus, the best compromise between productivity and product quality was achieved with the RPB2.  相似文献   

13.
A new anaerobic digester design for the treatment of diluted (<2% solids) flush dairy manure was evaluated. The new design was developed as an economic alternative for enhancing the performance of anaerobic lagoon systems in cold weather areas. The digester employed used automobile tires as fixed-bed media to improve bacterial retention. The digester was heated by steam injection and built underground to enhance insulation. The tires were sorted in a unique pattern for improving mixing and uniform temperature distribution. The system was tested on a pilot-scale. The treatment mechanism was explored by mathematical modeling. The observed treatment efficiency of the new design was comparable to that of conventional digesters operating at higher total solids concentrations (>4%). With a hydraulic retention time (HRT) of 17 days, the measured removal rates were 30-50% and 40-60% of TVS and COD, respectively. The new digester maintained longer solids retention time (SRT) as estimated using the model, supported by the observed thick biofilm formation and resistance to hydraulic overload. The model was used to analyze different operation scenarios varying both the organic and hydraulic loads.  相似文献   

14.
An extensive investigation of anaerobic methane fermentation requires identifying the relationship between the physical environment and biological process. In this study, a computational fluid dynamics (CFD) technique was used to characterize bacterial fermentation mechanisms intertwined with mixing and heat transfer in anaerobic digesters. The results demonstrate that the methane yield remains almost unchanged while the energy efficiency decreases with increasing mixing power in a complete‐mix digester, and that the energy output increases nonlinearly with the increase in heating energy in a plug‐flow digester. The CFD method can be applied to other bioreactors to gain valuable insights into their behavior as well. Integrating flow and temperature with kinetic behavior for anaerobic digestion not only solves the controversy about how mixing influences the digestive process, but also assists in optimizing the digester design and increasing the efficiency of energy conversion, and additionally, provides a reference for improving the mixing guidelines recommended by the U.S. Environmental Protection Agency. Biotechnol. Bioeng. 2012; 109: 2864–2874. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The evaluation of mixing quality is an important factor for improving the geometry of stirred-tank reactors and impellers used in bioprocess engineering applications, such as the enzymatic hydrolysis of plant materials. Homogeneity depends on different factors, including the stirrer type and the reactor type (e.g., ratio of diameter/height, ratio of impeller tip diameter/reactor diameter) with or without baffles. This study compares two impellers for enzymatic hydrolysis of suspensions of biomass particles on a milliliter scale. Both impellers were derived from industrially relevant geometries, such as blade and grid stirrers, although the geometry of the second stirrer was slightly modified to an asymmetric shape. The stirrers were investigated with different stirrer–reactor configurations. This was done experimentally and with the aid of computational fluid dynamics. The flow field, mixing numbers, power characteristics and initial conversion rates of sugars were considered to compare the two stirrers. The simulated mixing numbers and power characteristics in baffled and unbaffled milliliter-scale reactors were found to be in good agreement with the measured mixing times and power consumption. The mixing numbers required to reach homogeneity were much higher for the symmetric impeller and remained at least twice as high as the mixing numbers required when using the asymmetric impeller. The highest initial sugar releases from milled corn stover suspensions were achieved with the asymmetric impeller shape. Regardless of the differences in the flow fields or mixing times, diverging enzymatic sugar releases could be confirmed for Newtonian media only.  相似文献   

16.
Thirteen agitator configurations were investigated at low speed in stirred-tank reactors (STRs) to determine if improved crude bacterial nanocellulose (BNC) productivity can be achieved from glucose-based media while maintaining high BNC quality using Komagataeibacter xylinus ATCC 23770 as a model organism. A comparison of five single impellers showed the pitched blade (large) was the optimal impeller at 300 rpm. The BNC production was further increased by maintaining the pH at 5.0. Among the single helical ribbon and frame impellers and the combined impellers, the twin pitched blade provided the best results. The combined impellers at 150 rpm performed better than the single impellers, and after optimizing the agitation conditions, the twin pitched blade (large) and helical ribbon impellers performed the best at 100 rpm. The performances of different agitators at low speed during BNC production were related to how efficiently the agitators improved the oxygen mass transfer coefficient. The twin pitched blade (large) was verified as providing the optimum performance by an observed crude BNC production of 1.97 g (L×d)−1 and a BNC crude yield of consumed glucose of 0.41 g g−1, which were 2.25 and 2.37 times higher than the initial values observed using the single impeller respectively. Further characterization indicated that the BNC obtained at 100 rpm from the STR equipped with the optimal agitator maintained high degree of polymerization and crystallinity.  相似文献   

17.
18.
A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance.  相似文献   

19.

Background

When scaling up lignocellulose-based ethanol production, the desire to increase the final ethanol titer after fermentation can introduce problems. A high concentration of water-insoluble solids (WIS) is needed in the enzymatic hydrolysis step, resulting in increased viscosity, which can cause mass and heat transfer problems because of poor mixing of the material. In the present study, the effects of mixing on the enzymatic hydrolysis of steam-pretreated spruce were investigated using a stirred tank reactor operated with different impeller speeds and enzyme loadings. In addition, the results were related to the power input needed to operate the impeller at different speeds, taking into account the changes in rheology throughout the process.

Results

A marked difference in hydrolysis rate at different impeller speeds was found. For example, the conversion was twice as high after 48 hours at 500 rpm compared with 25 rpm. This difference remained throughout the 96 hours of hydrolysis. Substantial amounts of energy were required to achieve only minor increases in conversion during the later stages of the process.

Conclusions

Impeller speed strongly affected both the hydrolysis rate of the pretreated spruce and needed power input. Similar conversions could be obtained at different energy input by altering the mixing (that is, energy input), enzyme load and residence time, an important issue to consider when designing large-scale plants.  相似文献   

20.
An 11-L helical ribbon impeller (HRI) bioreactor was tested for the culture of Spodoptera frugiperda (Sf-9) cells. This impeller and surface baffling ensured homogeneous mixing and high oxygen transfer through surface aeration and surface-induced babble generation. Serum-supplemented and serum-free cultures, using TNMFH and IPL/41 media, respectively, grew a similar specific growth rates(0.031 and 0.028 h(-1)) to maximum cell densities of 5.5 x 10(6)-6.0 x 10(6) cells. mL(-1) with viability exceeding 98% during exponential growth phase. Growth limitation coincided with glucose and glutamine depletion and production of significant amounts of alanine. The bioreactor was further tested under more stringent conditions by infecting a serum-free medium culture with a recombinant baculovirus. Heterologous protein production of approximately 35 mug per 10(6) cells was comparable to yields obtained in serum-free cultures grown in spinner flasks and petri dishes. Average specific oxygen up-take and carbon dioxide production rates of the serum-free culture prior to infection as measured by on-line mass spectroscopy were 0.20 mumol O(2)mu.(10(6) cells)(-1) h(-1) and 0.22 mumol CO(2) . (10(6) cells)(-1)h(-1) and increased by 30-40% during infection. Therefore, the mixing and oxygenation conditions of this bioreactor were suitable for insect cell culture and recombinant protein production, with limitation being mainly attributed to nutrient depletion and toxic by-product generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号