首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the cellular function of group IVC phospholipase A(2) (IVC-PLA(2)) remains to be understood, the expression of IVC-PLA(2) in human monocytic THP-1 cells was increased during phorbol ester-induced macrophage differentiation. We therefore examined the role of IVC-PLA(2) in macrophage differentiation using THP-1 cells. Two THP-1 cell lines stably expressing IVC-PLA(2)-specific shRNA were established. Differentiation and maturation into macrophages on treatment with phorbol ester were facilitated by knockdown of IVC-PLA(2) without the compensatory induction of mRNA expression for other group IV and VI PLA(2)s. Furthermore, the enhancement of macrophage differentiation by IVC-PLA(2)-knockdown were abolished by treatment with lysophosphatidylcholine, a metabolite of phospholipids generated by PLA(2)-mediated hydrolysis, indicating that PLA(2) activity is necessary for the inhibition of macrophage differentiation by IVC-PLA(2). Additionally, we found that the differentiation into classically activated M1 macrophage was superior in IVC-PLA(2)-knockdown cells, whereas the differentiation into alternatively activated M2 macrophage was suppressed by IVC-PLA(2)-knockdown. These findings suggest that IVC-PLA(2) is involved in regulations of macrophage differentiation and macrophage polarization.  相似文献   

2.
It is well known that the expression level of secretory group IIA phospholipase A(2) (sPLA(2)-IIA) is elevated in inflammatory diseases and lipopolysaccharide (LPS) up-regulates the expression of sPLA(2)-IIA in human umbilical vein endothelial cells (HUVECs). Recently, lower concentration thrombin could elicit anti-inflammatory responses in HUVECs. Here, the effects of lower concentration thrombin on the expression of sPLA(2)-IIA in LPS-stimulated HUVECs were investigated. Prior treatment of cells with thrombin (25-75 pM) inhibited LPS-induced sPLA(2)-IIA expression by activating its receptor, protease-activated receptor-1 (PAR-1). And pretreatment of cells with either PI3-kinase inhibitor (LY294002) or cholesterol depleting agent (methyl-β-cyclodextrin, MβCD) abolished the inhibitory activity of thrombin against sPLA(2)-IIA expression. Therefore, these results suggest that PAR-1 activation by lower concentration thrombin inhibited LPS mediated expression of sPLA(2)-IIA by PAR-1 and PI3-kinase-dependent manner in lipid raft on the HUVECs.  相似文献   

3.
Excessive absorption of products of dietary fat digestion leads to type 2 diabetes and other obesity-related disorders. Mice deficient in the group 1B phospholipase A2 (Pla2g1b), a gut digestive enzyme, are protected against diet-induced obesity and type 2 diabetes without displaying dietary lipid malabsorption. This study tested the hypothesis that inhibition of Pla2g1b protects against diet-induced hyperlipidemia. Results showed that the Pla2g1b−/− mice had decreased plasma triglyceride and cholesterol levels compared with Pla2g1b+/+ mice subsequent to feeding a high-fat, high-carbohydrate (hypercaloric) diet. These differences were evident before differences in body weight gains were observed. Injection of Poloxamer 407 to inhibit lipolysis revealed decreased VLDL production in Pla2g1b−/− mice. Supplementation with lysophosphatidylcholine, the product of Pla2g1b hydrolysis, restored VLDL production rates in Pla2g1b−/− mice and further elevated VLDL production in Pla2g1b+/+ mice. The Pla2g1b−/− mice also displayed decreased postprandial lipidemia compared with Pla2g1b+/+ mice. These results show that, in addition to dietary fatty acids, gut-derived lysophospholipids derived from Pla2g1b hydrolysis of dietary and biliary phospholipids also promote hepatic VLDL production. Thus, the inhibition of lysophospholipid absorption via Pla2g1b inactivation may prove beneficial against diet-induced hyperlipidemia in addition to the protection against obesity and diabetes.  相似文献   

4.
The red sea bream (Pagrus major) was previously found to express mRNAs for two group IB phospholipase A2 (PLA2) isoforms, DE-1 and DE-2, in the digestive organs, including the hepatopancreas, pyloric caeca, and intestine. To characterize the ontogeny of the digestive function of these PLA2s, the present study investigated the localization and expression of DE-1 and DE-2 PLA2 genes in red sea bream larvae/juveniles and immature adults, by in situ hybridization. In the adults, DE-1 PLA2 mRNA was expressed in pancreatic acinar cells. By contrast, DE-2 PLA2 mRNA was detected not only in digestive tissues, such as pancreatic acinar cells, gastric glands of the stomach, epithelial cells of the pyloric caeca, and intestinal epithelial cells, but also in non-digestive ones, including cardiac and lateral muscle fibers and the cytoplasm of the oocytes. In the larvae, both DE-1 and DE-2 PLA2 mRNAs first appeared in pancreatic tissues at 3 days post-hatching (dph) and in intestinal tissue at 1 dph, and expression levels for both gradually increased after this point. In the juvenile stage at 32 dph, DE-1 PLA2 mRNA was highly expressed in pancreatic tissue, and DE-2 PLA2 mRNA was detected in almost all digestive tissues, including pancreatic tissue, gastric glands, pyloric caeca, and intestine, including the myomere of the lateral muscles. In conclusion, both DE-1 and DE-2 PLA2 mRNAs are already expressed in the digestive organs of red sea bream larvae before first feeding, and larvae will synthesize both DE-1 and DE-2 PLA2 proteins.  相似文献   

5.
The ER-Golgi intermediate compartment (ERGIC) is an organelle through which cargo proteins pass and are being transferred by either anterograde or retrograde transport between the endoplasmic reticulum (ER) and the Golgi apparatus. We examined the effect of 80 different kinase inhibitors on ERGIC morphology and found that rottlerin, a PKCδ inhibitor, induced the dispersion of the perinuclear ERGIC into punctate structures. Rottlerin also delayed anterograde transport of vesicular stomatitis virus G protein (VSVG) from the ER to the Golgi and retrograde transport of cholera toxin from cell surface to the ER via the Golgi. RNA interference revealed that knockdown of PKCδ or ε resulted in the dispersion of the ERGIC, but unexpectedly did not inhibit VSVG and cholera toxin transport. We also found that rottlerin depolarized the mitochondrial membrane potential, as does carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP), an uncoupler, and demonstrated that a decrease in the intracellular adenosine triphosphate (ATP) levels by rottlerin might underlie the block in transports. These results suggest that PKCδ and ε specifically regulate the morphology of the ERGIC and that the maintenance of ERGIC structure is not necessarily required for anterograde and retrograde transports.  相似文献   

6.
Yajing Peng 《Autophagy》2016,12(6):1051-1052
The N?-lysine acetylation of cargo proteins in the lumen of the endoplasmic reticulum (ER) requires a membrane transporter (SLC33A1) and 2 acetyltransferases (NAT8B and NAT8). The ER acetylation machinery regulates the homeostatic balance between quality control/efficiency of the secretory pathway and autophagy-mediated disposal of toxic protein aggregates. We recently reported that the autophagy pathway that acts downstream of the ER acetylation machinery specifically targets protein aggregates that form within the secretory pathway. Genetic and biochemical manipulation of ER acetylation in a mouse model of Alzheimer disease is able to restore normal proteostasis and rescue the disease phenotype. Here we summarize these findings and offer an overview of the ER-acetylation machinery.  相似文献   

7.
8.
9.
Prompt deposition of fibronectin-rich extracellular matrix is a critical feature of normal development and the host-response to injury. Fibronectin isoforms that include the EDA and EDB domains are prominent in these fibronectin matrices. We now report using human dermal fibroblast cultures that the EDA domain of fibronectin or EDA-derived peptides modeled after the C–C′ loop promote stress fiber formation and myosin-light chain phosphorylation. These changes are accompanied by an increase in fibronectin synthesis and fibrillogenesis. These effects are blocked by pretreating cells with either siRNA or blocking antibody to the α4 integrin. Our data indicate that the interaction between the α4β1 integrin and the EDA domain of fibronectin helps to drive tissue fibrosis by promoting a contractile phenotype and an increase in fibronectin synthesis and deposition.  相似文献   

10.
11.
12.
13.
The occurrence of several virulence traits (cytolysin, adhesins and hydrolytic enzymes) was investigated in a collection of 164 enterococci, including food and clinical isolates (from human and veterinary origin), as well as type and reference strains from 20 enterococcal species. Up to fifteen different cyl genotypes were found, as well as silent cyl genes. The occurrence of the cyl operon and haemolytic potential seems to be widespread in the genus. A significant association of this virulent trait with clinical isolates was found (p < 0.05). High levels of incidence were also observed for genes encoding surface adhesins (esp, efaA(fs), efaA(fm)), agg and gelE, irrespectively of species allocation and origin of strains. Although gelE behaves as silent in the majority of the strains, gelatinase activity predominates in clinical isolates, whereas lipase and DNase were mainly detected in food isolates pointing to their minor role as virulence determinants. No hyaluronidase activity was detected for all strains. Numerical hierarchic data analysis grouped the strains in three main clusters, two of them including a total of 50 strains with low number of virulence determinants (from 2 to 7) and the other with 114 strains with a high virulence potential (up to 12 determinants). No statistical association was found between virulence clusters and species allocation (p > 0.10), strongly suggesting that virulence determinants are a common trait in the genus Enterococcus. Clinical strains seem to be significantly associated with high virulence potential, whereas food, commensal and environmental strains harbour fewer virulence determinants (p < 0.01). A high level of relative diversity in virulence patterns was observed (Shannon's index varies from 0.95 to 1.0 among clusters), reinforcing the strain-specific nature of the association of virulence factors. Although a low risk seems to be associated with the use of enterococci in long-established artisanal cheeses, screening of virulence traits and their cross-synergies must be performed, particularly for commercial starters, probiotic strains and products to be used by high risk population groups.  相似文献   

14.
15.
The regulated expression of ICAM-1 plays an important role in inflammatory processes and immune responses. The present study aimed to determine the in vivo involvement of cytosolic phospholipase A(2)α (cPLA(2)α) in ICAM-1 overexpression during inflammation and to elucidate the cPLA(2)α-specific role in signal events leading to ICAM-1 upregulation in endothelial cells. cPLA(2)α and ICAM-1 upregulation were detected in inflamed paws of mice with collagen-induced arthritis and in periepididymal adipose tissue of mice fed a high-fat diet. Intravenous injection of 2 mg/kg oligonucleotide antisense against cPLA(2)α (AS) that reduced cPLA(2)α upregulation also decreased ICAM-1 overexpression, suggesting a key role of cPLA(2)α in ICAM-1 upregulation during inflammation. Preincubation of endothelial ECV-304 cells that express ICAM-1 and of HUVEC that express ICAM-1 and VCAM-1 with 1 μM AS prevented cPLA(2)α and the adhesion molecule upregulation induced by TNF-α and inhibited their adherence to phagocyte like-PLB cells. Whereas AS did not inhibit NADPH oxidase 4-NADPH oxidase activity, inhibition of oxidase activity attenuated cPLA(2)α activation, suggesting that NADPH oxidase acts upstream to cPLA(2)α. Attenuating cPLA(2)α activation by AS or diphenylene iodonium prevented the induction of cyclooxygenase-2 and the production of PGE(2) that were essential for ICAM-1 upregulation. Inhibition of cPLA(2)α activity by AS inhibited the phosphorylation of both p65 NF-κB on Ser(536) and protein kinase A-dependent CREB. To our knowledge, our results are the first to show that CREB activation is involved in ICAM-1 upregulation and suggest that cPLA(2)α activated by NADPH oxidase is required for sequential phosphorylation of NF-κB by an undefined kinase and CREB activation by PGE(2)-mediated protein kinase A.  相似文献   

16.
17.
The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα–GPR–LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα–GPR–LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division.  相似文献   

18.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that is characterized by the selective loss of motor neurons. Approximately 5% to 10% of patients with ALS have a family history of the disease, and approximately 20% of familial amyotrophic lateral sclerosis (fALS) cases are associated with mutations in Cu/Zn superoxide dismutase (SOD1). In this study, we evaluated the structural and functional effects of human A4F and A4V SOD1 protein mutations. We performed an in silico analysis using prediction algorithms of nonsynonymous single-nucleotide polymorphisms (nsSNPs) associated with the fALS development. Our structural conservation results show that the mutations analyzed (A4V and A4F) were in a highly conserved region. Molecular dynamics simulations using the Linux GROMACS package revealed how these mutations affect protein structure, protein stability, and aggregation. These results suggest that there might be an effect on the SOD1 function. Understanding the molecular basis of disease provides new insights useful for rational drug design and advancing our understanding of the ALS development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号