首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M E Cardenas  R S Muir  T Breuder    J Heitman 《The EMBO journal》1995,14(12):2772-2783
The immunosuppressive complexes cyclophilin A-cyclosporin A (CsA) and FKBP12-FK506 inhibit calcineurin, a heterodimeric Ca(2+)-calmodulin-dependent protein phosphatase that regulates signal transduction. We have characterized CsA- or FK506-resistant mutants isolated from a CsA-FK506-sensitive Saccharomyces cerevisiae strain. Three mutations that confer dominant CsA resistance are single amino acid substitutions (T350K, T350R, Y377F) in the calcineurin A catalytic subunit CMP1. One mutation that confers dominant FK506 resistance alters a single residue (W430C) in the calcineurin A catalytic subunit CMP2. In vitro and in vivo, the CsA-resistant calcineurin mutants bind FKBP12-FK506 but have reduced affinity for cyclophilin A-CsA. When introduced into the CMP1 subunit, the FK506 resistance mutation (W388C) blocks binding by FKBP12-FK506, but not by cyclophilin A-CsA. Co-expression of CsA-resistant and FK506-resistant calcineurin A subunits confers resistance to CsA and to FK506 but not to CsA plus FK506. Double mutant calcineurin A subunits (Y377F, W388C CMP1 and Y419F, W430C CMP2) confer resistance to CsA, to FK506 and to CsA plus FK506. These studies identify cyclophilin A-CsA and FKBP12-FK506 binding targets as distinct, highly conserved regions of calcineurin A that overlap the binding domain for the calcineurin B regulatory subunit.  相似文献   

2.
The immunosuppressants cyclosporin A (CsA) and FK506 inhibit the protein phosphatase calcineurin and block T-cell activation and transplant rejection. Calcineurin is conserved in microorganisms and plays a general role in stress survival. CsA and FK506 are toxic to several fungi, but the common human fungal pathogen Candida albicans is resistant. However, combination of either CsA or FK506 with the antifungal drug fluconazole that perturbs synthesis of the membrane lipid ergosterol results in potent, synergistic fungicidal activity. Here we show that the C.albicans FK506 binding protein FKBP12 homolog is required for FK506 synergistic action with fluconazole. A mutation in the calcineurin B regulatory subunit that confers dominant FK506 resistance (CNB1-1/CNB1) abolished FK506-fluconazole synergism. Candida albicans mutants lacking calcineurin B (cnb1/cnb1) were found to be viable and markedly hypersensitive to fluconazole or membrane perturbation with SDS. FK506 was synergistic with fluconazole against azole-resistant C.albicans mutants, against other Candida species, or when combined with different azoles. We propose that calcineurin is part of a membrane stress survival pathway that could be targeted for therapy.  相似文献   

3.
4.
Regulation of tumor necrosis factor cytotoxicity by calcineurin   总被引:1,自引:0,他引:1  
Cyclosporin (CsA) inhibits mitochondrial death signaling and opposes tumor necrosis factor (TNF)-induced apoptosis in vitro. However, CsA is also a potent inhibitor of calcineurin, a phosphatase that may participate in cell death. Therefore, we tested the hypothesis that calcineurin regulates TNF cytotoxicity in rat hepatoma cells (FTO2B). TNF-treated FTO2B cells appeared apoptotic by DNA fragmentation, nuclear condensation, annexin V binding, and caspase activation. We studied two calcineurin inhibitors, CsA and FK506, and found that each potently inhibited TNF cytotoxicity. Western blot demonstrated calcineurin in FTO2B homogenates. In a model of mitochondrial permeability transition (MPT), we found that CsA prevented MPT and cytochrome c release, while FK506 inhibited neither. In summary, we present evidence that calcineurin participates in an apoptotic death pathway activated by TNF. CsA may oppose programmed cell death by inhibiting calcineurin activity and/or inhibiting mitochondrial signaling.  相似文献   

5.
Cyclosporin A (CsA) and FK506 are potent natural product immunosuppressants that induce their biological effects by forming an initial complex with cytosolic proteins termed immunophilins. These drug immunophilin complexes then bind to and inhibit the serine/threonine protein phosphatase calcineurin (CN). Two classes of immunophilin have been identified with cyclophilins (CyP's) being proteins specifically binding CsA and FKBPs specifically binding FK506. Solution and crystal structures of various CsA-CyP and FK506-FKBP complexes have been determined and show no apparent structural similarity between the two classes of drug protein complexes. These findings raise the question as to how, given their structural differences, these two complexes can both inhibit CN. While the crystal structure of the FK506-FKBP12-CN complex has been reported, no structure for a CsA-CyP CN complex has been determined. Here are reported studies that use various modelling strategies to construct a model for the interaction of the cyclosporin A- cyclophilin A complex with calcineurin. The first stage of constructing this model consisted of using conformational comparison of CsA and FK506, GRID and GROUP analysis and restrained molecular dynamics to dock CsA into the FK506 binding site of the FK506-FKBP12-CN structure. An initial model for the CsA-CyPA-CN complex was then constructed by superimposing the structure of the CsA-CyPA complex onto the docked CsA molecule. This model was then optimised with molecular dynamics simulations run on sterically clashing regions. The validity of the model for the CsA-CyPA-CN complex was then examined with respect to the effect of chemical modifications to CsA and amino acid substitutions within CyPA on the ability of the drug-immunophilin complex to inhibit calcineurin.  相似文献   

6.
Although the immediate receptors (immunophilins) of the immunosuppressants cyclosporin A (CsA) and FK506 are distinct, their similar mechanisms of inhibition of cell signaling suggest that their associated immunophilin complexes interact with a common target. We report here that the complexes cyclophilin-CsA and FKBP-FK506 (but not cyclophilin, FKBP, FKBP-rapamycin, or FKBP-506BD) competitively bind to and inhibit the Ca(2+)- and calmodulin-dependent phosphatase calcineurin, although the binding and inhibition of calcineurin do not require calmodulin. These results suggest that calcineurin is involved in a common step associated with T cell receptor and IgE receptor signaling pathways and that cyclophilin and FKBP mediate the actions of CsA and FK506, respectively, by forming drug-dependent complexes with and altering the activity of calcineurin-calmodulin.  相似文献   

7.
8.
9.
T cell receptor (TCR) ligation induces increased diacylglycerol and Ca(2+) levels in T cells, and both secondary messengers are crucial for TCR-induced nuclear factor of activated T cells (NF-AT) and NF-κB signaling pathways. One prominent calcium-dependent enzyme involved in the regulation of NF-AT and NF-κB signaling pathways is the protein phosphatase calcineurin. However, in contrast to NF-AT, which is directly dephosphorylated by calcineurin, the molecular basis of the calcium-calcineurin dependence of the TCR-induced NF-κB activity remains largely unknown. Here, we demonstrate that calcineurin regulates TCR-induced NF-κB activity by controlling the formation of a protein complex composed of Carma1, Bcl10, and Malt1 (CBM complex). For instance, increased calcium levels induced by ionomycin or thapsigargin augmented the phorbol 12-myristate 13-acetate-induced formation of the CBM complex and activation of NF-κB, whereas removal of calcium by the calcium chelator EGTA-acetoxymethyl ester (AM) attenuated both processes. Furthermore, inhibition of the calcium-dependent phosphatase calcineurin with the immunosuppressive agent cyclosporin A (CsA) or FK506 as well as siRNA-mediated knockdown of calcineurin A strongly affected the PMA + ionomycin- or anti-CD3 + CD28-induced CBM complex assembly. Mechanistically, the positive effect of calcineurin on the CBM complex formation seems to be linked to a dephosphorylation of Bcl10. For instance, Bcl10 was found to be hyperphosphorylated in Jurkat T cells upon treatment with CsA or EGTA-AM, and calcineurin dephosphorylated Bcl10 in vivo and in vitro. Furthermore, we show here that calcineurin A interacts with the CBM complex. In summary, the evidence provided here argues for a previously unanticipated role of calcineurin in CBM complex formation as a molecular basis of the inhibitory function of CsA or FK506 on TCR-induced NF-κB activity.  相似文献   

10.
Good fungi gone bad: the corruption of calcineurin   总被引:17,自引:0,他引:17  
Calcineurin is a Ca(2+)/calmodulin-activated protein phosphatase that is conserved in eukaryotes, from yeast to humans, and is the conserved target of the immunosuppressive drugs cyclosporin A (CsA) and FK506. Genetic studies in yeast and fungi established the molecular basis of calcineurin inhibition by the cyclophilin A-CsA and FKBP12-FK506 complexes. Calcineurin also functions in fungi to control a myriad of physiological processes including cell cycle progression, cation homeostasis, and morphogenesis. Recent investigations into the molecular mechanisms of pathogenesis in Candida albicans and Cryptococcus neoformans, two fungi that cause life-threatening infections in humans, have revealed an essential role for calcineurin in morphogenesis, virulence, and antifungal drug action. Novel non-immunosuppressive analogs of the calcineurin inhibitors CsA and FK506 that retain antifungal activity have been identified and hold promise as candidate antifungal drugs. In addition, comparisons of calcineurin function in both fungi and humans may identify fungal-specific components of calcineurin-signaling pathways that could be targeted for therapy, as well as conserved elements of calcium signaling events.  相似文献   

11.
Calcineurin is required for virulence of Cryptococcus neoformans.   总被引:13,自引:0,他引:13       下载免费PDF全文
A Odom  S Muir  E Lim  D L Toffaletti  J Perfect    J Heitman 《The EMBO journal》1997,16(10):2576-2589
Cyclosporin A (CsA) and FK506 are antimicrobial, immunosuppressive natural products that inhibit signal transduction. In T cells and Saccharomyces cerevisiae, CsA and FK506 bind to the immunophilins cyclophilin A and FKBP12 and the resulting complexes inhibit the Ca2+-regulated protein phosphatase calcineurin. We find that growth of the opportunistic fungal pathogen Cryptococcus neoformans is sensitive to CsA and FK506 at 37 degrees C but not at 24 degrees C, suggesting that CsA and FK506 inhibit a protein required for C. neoformans growth at elevated temperature. Genetic evidence supports a model in which immunophilin-drug complexes inhibit calcineurin to prevent growth at 37 degrees C. The gene encoding the C. neoformans calcineurin A catalytic subunit was cloned and disrupted by homologous recombination. Calcineurin mutant strains are viable but do not survive in vitro conditions that mimic the host environment (elevated temperature, 5% CO2 or alkaline pH) and are no longer pathogenic in an animal model of cryptococcal meningitis. Introduction of the wild-type calcineurin A gene complemented these growth defects and restored virulence. Our findings demonstrate that calcineurin is required for C. neoformans virulence and may define signal transduction elements required for fungal pathogenesis that could be targets for therapeutic intervention.  相似文献   

12.
13.
The reversible inhibition of calcineurin (CaN), which is the only Ca(2+)/calmodulin-dependent protein Ser/Thr phosphatase, is thought to be a key functional event for most cyclosporin A (CsA)- and tacrolimus (FK506)-mediated biological effects. In addition to CaN inhibition, however, CsA and FK506 have multiple biochemical effects because of their action in a gain-of-function model that requires prior binding to immunophilic proteins. We screened a small molecule library for direct inhibitors of CaN using CaN-mediated dephosphorylation of (33)P-labeled 19-residue phosphopeptide substrate (RII phosphopeptide) as an assay and found the polyphenolic aldehyde gossypol to be a novel CaN inhibitor. Unlike CsA and FK506, gossypol does not require a matchmaker protein for reversible CaN inhibition with an IC(50) value of 15 microm. Gossypolone, a gossypol analog, showed improved inhibition of both RII phosphopeptide and p-nitrophenyl phosphate dephosphorylation with an IC(50) of 9 and 6 microm, respectively. In contrast, apogossypol hexaacetate was inactive. Gossypol acts noncompetitively, interfering with the binding site for the cyclophilin 18.CsA complex in CaN. In contrast to CsA and FK506, gossypol does not inactivate the peptidyl-prolyl-cis/trans-isomerase activity of immunophilins. Similar to CsA and FK506, T cell receptor signaling induced by phorbol 12-myristate 13-acetate/ionomycin is inhibited by gossypol in a dose-dependent manner, demonstrated by the inhibition of nuclear factor of activated T cell (NFAT) c1 translocation from the cytosol into the nucleus and suppression of NFAT-luciferase reporter gene activity.  相似文献   

14.
15.
16.
17.
The linker for activation of T cells (LAT) is essential for T cell activation. Cyclosporin A (CsA) and FK506, inhibitors of T cell proliferation, have been very useful for preventing autoimmune and inflammatory disease and graft rejection. However, both compounds are associated with side effects. We show that TCR ligation in the presence of FK506 or CsA induced rapid modifications in LAT that modulate the electrophoretic mobility of the molecule in SDS-PAGE. Calcineurin, a target for CsA and FK506, dephosphorylated LAT in vitro and restored its electrophoretic mobility. Stimulating T cells with the protein kinase C (PKC) activator PMA induced a shift in the mobility of LAT, whereas inhibitors of PKC blocked the effect of PMA. Thus, manipulating calcineurin or PKC activation alters the electrophoretic mobility of LAT. These results shed light on the molecular actions of CsA and FK506 in T cells and implicate LAT in mediating the drugs' actions.  相似文献   

18.
Neural roles of immunophilins and their ligands   总被引:9,自引:0,他引:9  
The immunophilins are a family of proteins that are receptors for immunosuppressant drugs, such as cyclosporin A, FK506, and rapamycin. The occur in two classes, the FK506-binding proteins (FKBPs), which bind FK506 and rapamycin, and the cyclophilins, which bind cyclosporin A. Immunosuppressant actions of cyclosporin A and FK506 derive from the drug-immunophilin complex binding to and inhibiting the phosphatase calcineurin. Rapamycin binds to FKBP and the complex binds toRapamycinAnd FKBP-12Target (RAFT). RAFT affects protein translation by phosphorylating p70-S6 kinase, which phosphorylates the ribosomal S6 protein, and 4E-BP1, a repressor of protein translation initiation. Immunophilin levels are much higher in the brain than in immune tissues, and levels of FKBP12 increase in regenerating neurons in parallel with GAP-43. Immunophilin ligands, including nonimmunosuppressants that do not inhibit calcineurin, stimulate regrowth of damaged peripheral and central neurons, including dopamine, serotonin, and cholinergic neurons in intact animals. FKPB12 is physiologically associated with the ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors and regulates their calcium flux. By influencing phosphorylation of nruronal nitric oxide synthase, FKBP12 regulates nitric oxide formation, which is reduced by FK506.  相似文献   

19.
CCK increases the rate of net protein synthesis in rat pancreatic acini by activating initiation and elongation factors required for translation. The immunosuppressant FK506 inhibits the Ca2+-calmodulin-dependent phosphatase calcineurin in pancreatic acinar cells and blocks pancreatic growth induced by chronic CCK treatment. To test a requirement for calcineurin in the activation of the translational machinery stimulated by CCK, we evaluated the effects of FK506 on protein synthesis and on regulatory initiation and elongation factors in rat pancreatic acini in vitro. CCK acutely increased protein synthesis in acini from normal rats with a maximum increase at 100 pM CCK to 170 ± 11% of control. The immunosuppressant FK506 dose-dependently inhibited CCK-stimulated protein synthesis over the same concentration range that blocked calcineurin activity, as assessed by dephosphorylation of the calcineurin substrate calcium-regulated heat-stable protein of 24 kDa. Another immunosuppressant, cyclosporin A, inhibited protein synthesis, but its effects appeared more complex. FK506 also inhibited protein synthesis stimulated by bombesin and carbachol. FK506 did not significantly affect the activity of the initiation factor-2B, or the phosphorylation of the initiation factor-2, ribosomal protein protein S6, or the mRNA cap binding protein eukaryotic initiation factor (eIF) 4E. Instead, blockade of calcineurin with FK506 reduced the phosphorylation of the eIF4E binding protein, reduced the formation of the eIF4F complex, and increased the phosphorylation of eukaryotic elongation factor 2. From these results, we conclude that calcineurin activity is required for protein synthesis, and this action may be related to an effect on the formation of the mRNA cap binding complex and the elongation processes. exocrine pancreas; cholecystokinin; translation initiation factors; protein phosphatase 2B; immunosuppressants  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号