首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A monoclonal antibody (BF4) has been used to characterize and purify the heat-shock protein of Mr approximately 90,000 (hsp 90) present in the chick oviduct. In low salt cytosol, the sedimentation coefficient of hsp 90 is approximately 6.8 S, the Stokes radius approximately 7.1 nm, and the calculated Mr approximately 204,000, thus suggesting a dimeric structure. In 0.4 M KCl cytosol, only slightly smaller values were determined (approximately 6.5 S, approximately 6.8 nm, and approximately 187,000). Following purification by ion exchange and immunoaffinity chromatography, hsp 90 migrated as a single silver-stained band at Mr approximately 90,000 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the sedimentation coefficient 6.2 S, the Stokes radius approximately 6.8 nm, and the Mr approximately 178,000 confirmed the dimeric structure. However, in both antigen or antibody excess conditions, only one molecule of monoclonal antibody could be bound to the hsp 90 dimer. Whether steric hindrance in a homodimer or the presence of two different 90-kDa proteins in a heterodimer explains this result cannot yet be decided. The dimer is not dissociated by high salt (1 M KCl) or the chaotropic agent (0.5 M NaSCN), but is disrupted by 4 M urea, suggesting a stabilization of the structure by hydrogen bonds. The molybdate-stabilized progesterone receptor hetero-oligomer form of approximately 8 S sedimentation coefficient was purified, and its hsp 90 component was then released by salt treatment. It was found to sediment at approximately 5.8 S and have a Stokes radius approximately 7.1 nm, giving Mr approximately 174,000. This observation is consistent with a previous report suggesting from specific activity determination, scanning of polyacrylamide gels, and cross-linking experiments that each purified nontransformed progesterone receptor molecule includes one progesterone binding unit per two 90-kDa protein molecules (Renoir, J. M., Buchou, T., Mester, J., Radanyi, C., and Baulieu, E. E. (1984) Biochemistry 23, 6016-6023). This work brings direct evidence that both free hsp 90 and the non-hormone binding hsp 90 component released from the nontransformed steroid receptor in the cytosol are in a dimeric form.  相似文献   

3.
The binding of [3H]aldosterone in the chick intestine cytosol was analyzed in terms of affinity and specificity. In this tissue, aldosterone binds to the mineralocorticosteroid receptor, with a high affinity (Kd approximately 0.3 nM) and low capacity (approximately 50 fmol/mg protein), and to the glucocorticosteroid receptor. The selective labeling of the mineralocorticosteroid receptor was achieved by incubating the cytosol with [3H]aldosterone in the presence of RU 486. This synthetic steroid completely inhibited the binding of [3H]aldosterone to the glucocorticosteroid receptor and did not bind to the mineralocorticosteroid receptor. The oligomeric structure of the mineralocorticosteroid receptor was studied by using BF4, a monoclonal antibody which reacts with the 90-kDa heat shock protein (hsp 90), a nonhormone-binding component of nontransformed steroid receptors. The mineralocorticosteroid receptor sedimented at 8.5 +/- 0.4 S (n = 8) in a 15-40% glycerol gradient. This peak was shifted to 11.2 +/- 0.6 S (n = 5) after incubation with BF4, indicating that, in the cytosol, hsp 90 was associated with the mineralocorticosteroid receptor. Dissociation of the complex was observed on gradients containing 0.4 M KCl, as judged by the absence of displacement by BF4 of the 4.3 +/- 0.4 S (n = 10) peak. The effect of molybdate and tungstate ions, and of dimethyl pimelimidate, an irreversible cross-linking agent, on the stability of the hsp 90-receptor complex was investigated. Complexes recovered in the presence of 20 mM molybdate ions dissociated on gradients containing 0.4 M KCl (5.2 +/- 0.6 S (n = 4), whereas complexes prepared in the presence of 20 mM tungstate ions sedimented at 8.5 +/- 0.4 S (n = 7). Similarly, complexes prepared in the presence of molybdate ions dissociated during high pressure liquid chromatography (HPLC) gel filtration analysis performed in 0.4 M KCl (RS (Stokes radius) = 3.9 +/- 0.5 nm (n = 3) versus 7.3 +/- 0.2 nm (n = 3) in the presence of 20 mM molybdate ions), whereas complexes prepared in the presence of tungstate ions did not dissociate (RS = 6.9 +/- 0.2 nm (n = 3]. As observed for the tungstate-stabilized receptor, the cross-linked receptor dissociated neither on gradient containing 0.4 M KCl (9.5 +/- 0.1 S (n = 3] nor during HPLC performed in 0.4 M KCl (RS = 6.5 +/- 0.3 (n = 4]. Furthermore, the cross-linked receptor was more resistant to the inactivating effect of urea on aldosterone binding than the noncross-linked receptor prepared in the presence of either molybdate or tungstate ions.  相似文献   

4.
The molybdate-stabilized calf uterine estradiol receptor has been purified to near-homogeneity by a three-step procedure. Initial purification by heparin-Sepharose chromatography provides a concentrated receptor extract in 40% yield with a 5-10-fold increase in purity. The inclusion of molybdate in phosphate-buffered cytosol enhances 9-10 S receptor stability in high salt and allows elution of the oligomeric receptor complex from heparin-Sepharose with 0.4 M KCl. A second affinity step utilizing estrone carboxymethyloxime coupled to diaminoethyl bis(2-hydroxypropoxy)butane-Sepharose Cl-4B increases purification by a further 1600-fold. High performance liquid chromatography gives homogeneous receptor which migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as a polypeptide of Mr approximately 89,000. The purified molybdate-stabilized receptor sediments at 9.3 +/- 0.2 S (n = 4) in glycerol gradients and has a Stokes radius of 74 +/- 3 A (n = 2) giving a calculated Mr approximately 290,000. These properties and the steroid-binding specificity of the purified receptor bear a close similarity to those found for the 9-10 S receptor in crude cytosol.  相似文献   

5.
Reconstitution of the 9 S estrogen receptor with heat shock protein 90   总被引:2,自引:0,他引:2  
As a first step in the investigation of the reconstitution of steroid hormone receptor systems, we studied the reconstitution of 9 S estrogen receptor (ER) from purified vero ER, which is the estradiol binding subunit, and heat shock protein 90 (hsp 90). By using a phosphate buffer containing molybdate, thiocyanate, dimethylformamide, glycerol, etc., vero ER could be converted to 9 S ER with hsp 90, but not with the control protein, ovalbumin. Inactivation of ER during the reconstitution was suppressed partially by hsp 90, but not by ovalbumin. Like native 8 S ER, the reconstituted ER was sedimented at about 8.9 S and 4.6 S on glycerol gradient centrifugation in low and high salt buffers, respectively.  相似文献   

6.
The nontransformed forms of the chick oviduct cytosol progesterone receptor of sedimentation coefficient approximately 8 S (8S-PR) are heterooligomers including one hormone binding molecule, either B, approximately 110,000, or A, approximately 79,000, and two non-hormone binding subunits recently identified as heat-shock protein Mr approximately 90,000 (hsp 90) [Renoir, J. M., Buchou, T., Mester, J., Radanyi, C., & Baulieu, E. E. (1984) Biochemistry 23, 6016-6023]. In the crude cytosol, bisimidates reacted under mild conditions and gave rise to complexes, binding progesterone and reacting with BF4, an anti-hsp 90 monoclonal antibody. These complexes have a sedimentation coefficient of 8.4 S and Rs of 8.1 nm in the presence of 0.4 M KCl and in the absence of molybdate ions, i.e., in conditions that would transform non-cross-linked 8S-PR to Rs approximately 5 nm forms of approximately 4-S sedimentation coefficient. All bisimidates tested, of an effective reagent length between 0.73 and 1.09 nm, gave comparable results in the cytosol prepared with or without molybdate ions, confirming that the latter were not responsible for the formation of the cross-linked 8S complexes. It was found that the dimethyl pimelimidate cross-linked 8S-PR was more resistant to inactivating conditions, urea, or heat treatment than the non-cross-linked 8S-PR. The 8S-PR cross-linked in the cytosol was purified by affinity chromatography in the absence of molybdate ions. After purification, it also reacted with the monoclonal antibody BF4 and had the same Rs (8.0 nm), sedimentation coefficient (approximately 8.5 S), and thus Mr (approximately 290,000) as the original cytosol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
8.
Inhibition of protein synthesis initiation in rabbit reticulocyte lysates occurs in response to a variety of conditions including heme deficiency, addition of oxidants, and heat stress. The inhibition of translation occurs due to the activation of a heme-regulated protein kinase (HRI), which specifically phosphorylates the alpha-subunit of the eukaryotic initiation factor eIF-2. How the activation of HRI in hemin-supplemented lysate occurs in response to oxidants and heat stress is not well understood. Recently, the 90-kDa heat shock protein (hsp 90) has been reported to co-purify with HRI activity. In this report, we have used monoclonal antibodies directed against hsp 90 to determine whether HRI and hsp 90 are functionally associated in the reticulocyte lysate in situ. The AC88 antibody recognizes only free hsp 90 and only bound significant amounts of hsp 90 upon prolonged incubation in the absence of heme or upon N-ethylmaleimide treatment of hemin-supplemented lysates. HRI activity is not absorbed by the AC88 antibody. The 8D3 monoclonal antibody, which binds to both free hsp 90 and hsp 90 complexed to steroid hormone receptors, absorbed the hsp 90 present in hemin-supplemented lysates and reduced the HRI activity by 70-95%. Progressively more HRI activity is not adsorbed by the 8D3 antibody the longer the reticulocyte lysate is incubated in the absence of hemin. The HRI that is adsorbed from heme-deficient lysates by the 8D3 antibody is also more active. The sedimentation rate of HRI was analyzed by glycerol gradient centrifugation. HRI present in hemin-supplemented lysate was found to have a sedimentation coefficient of approximately 7.5-8 S and was adsorbed from fractions by the 8D3 antibody in association with hsp 90. A second peak of HRI activity with a sedimentation coefficient of approximately 4.5-5 S was detected upon glycerol gradient centrifugation of heme-deficient lysates. Upon Western blot analysis, heme-deficient lysates were found to have less hsp 90 in the 7.5-8 S region of glycerol gradients than hemin-supplemented lysates. The data suggest that HRI is associated with hsp 90 in an inactive form in hemin-supplemented lysates and dissociates from hsp 90 upon activation. There also appears to be an intermediate of active HRI which is associated with hsp 90 or which can reversibly associate with hsp 90. Similarities between the stages of HRI activation and steroid hormone receptor activation and transformation are discussed.  相似文献   

9.
Previous studies have shown that the exposure of molybdate-stabilized nontransformed glucocorticoid receptor (GR) of the chick embryonic neural retina to 0.4 M KCl dissociated the 9.5 S complex to a 5 S GR complex, which is an intermediate state in GR transformation. The present study was designed to characterize the 5 S GR complex. It shows that molybdate-stabilized nontransformed 9.5 S GR complex and 5 S GR interact with monoclonal antibodies (MAb) directed against 90 kDa heat shock protein (hsp90), as evidenced by the increase in the sedimentation velocity of these GR-complexes. Electrofocusing of the partially purified molybdate-stabilized nontransformed GR, prepared from [32P]-labeled neural retinas, and of the 5 S GR (derived from molybdate-stabilized preparation) showed that nontransformed GR complex, which has an apparent pI (pI') value of 5.0 +/- 0.2, and 5 S GR, which was resolved in a major peak with a pI' value of 5.8, are phosphorylated. Partially purified 5 S GR, cleared of molybdate and exposed to 25 degrees C, was resolved by electrofocusing into two phosphorylated fractions, one with a pI' value of 6.5, representing the monomeric GR form and the other with a pI' value of 5.1, apparently representing the acidic hsp90. The dissociation of hsp90 from the molybdate-cleared 5 S heterodimer seems to account for the decrease in the negative net charge of 5 S GR from pI' 6.5. Monomeric GR, derived from a molybdate-cleared, partially purified GR preparation, by the exposure to 25 degrees C, did not retain glucocorticoid-binding activity. Molybdate-stabilized 5 S GR was apparently re-assembled into the oligomeric nontransformed state when the salt concentration was reduced. This phenomenon was evident under the low-salt conditions of electrofocusing, by the shift in pI' value of GR from 5.8 to 5.0; and in glycerol density gradients containing 0.15 M KCl, by the shift in the sedimentation of the GR complex from 5 S to 9.5 S.  相似文献   

10.
A glucocorticoid receptor-associated Mr approximately 90,000 non-hormone-binding protein was purified and characterized. The molybdate-stabilized nonactivated rat liver glucocorticoid-receptor complex (Mr approximately 300,000) was immunoadsorbed on cyanogen bromide-activated Sepharose 4B to which a monoclonal IgG 2a antibody directed against the activated rat glucocorticoid receptor (Mr approximately 94,000) had been coupled. Following removal of molybdate and thermal activation of the receptor immobilized on the immunoaffinity matrix, an Mr approximately 90,000 non-hormone-binding protein was specifically eluted. This protein was further purified to homogeneity using high performance ion exchange chromatography and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, sucrose gradient ultra-centrifugation, and high performance size-exclusion chromatography. Hydrodynamic characterization under nondenaturing conditions revealed that the purified glucocorticoid receptor-associated protein represents a molecular species with a sedimentation coefficient of 6.1 S, a Stokes radius of 6.9 nm, and a calculated Mr approximately 184,000. These results, combined with analysis on denaturing electrophoresis indicate that, under certain conditions, the Mr approximately 94,000 steroid-binding protein is associated with a dimer of Mr approximately 90,000 non-hormone-binding protein.  相似文献   

11.
Based upon measurements of the sedimentation coefficient and the Stokes radii, three forms of the oxysterol-binding protein were identified. The unliganded binding protein was the largest (7.7 S, Stokes radius = 71.6 A, Mr = 236,000) was relatively asymmetric (f/f0 = 1.7), and was composed of at least three subunits. Binding of 25-hydroxycholesterol was associated with a reduction in the size of the protein (7.5 S, Stokes radius = 50 A, Mr approximately 169,000) and an increase in symmetry (f/f0 = 1.4), due to the loss of a subunit of Mr approximately 67,000. At pH 6 or lower, the Mr = 169,000 sterol-protein complex was altered so that reversible dissociation to give a smaller (4.2 S, Stokes radius = 53 A, Mr = 97,000) more asymmetric (f/f0 = 1.8) sterol-protein complex occurred when it was sedimented in a sucrose gradient buffered at pH 7.4 containing 0.3 M KCl and 2.5 M urea. Irreversible dissociation of the 7.5 S, Mr = 169,000 form to a 4.2 S form occurred spontaneously when the complex in whole cytosol buffered at pH 7.8 was allowed to stand overnight at 0 degree C, or when the partially purified complex was incubated at pH 5.5 at 0 degree C for several days. The partially purified, unliganded binding protein was unstable at 0 degree C (approximately 75% loss of binding activity in 24 h) whereas the liganded protein was stable for 7 days at 0 degree C although irreversible conversion to a 4.2 S form occurred under some conditions. Rates of sterol binding and dissociation were increased in the presence of 2.5 M urea at pH 7.4 or when the pH was lowered to 5.5 Kd values were not greatly altered under the various incubation conditions.  相似文献   

12.
Non-transformed steroid receptors have an approximately 8S sedimentation coefficient that corresponds to an oligomeric structure of 250-300 kd which includes a non-hormone binding 90-kd protein. A monoclonal antibody BF4 raised against the purified, molybdate-stabilized, 8S progesterone receptor (8S-PR) from chick oviduct, recognizes 8S forms of all steroid hormone receptors. BF4 was found specific for a 90-kd protein present in great abundance in all chicken tissues, including that present in 8S-forms of steroid receptors. Here, using immunological and biochemical techniques, we demonstrate that this ubiquitous BF4-positive 90-kd protein is in fact the chicken 90 kd heat-shock protein (hsp 90): it increased in heat-shocked chick embryo fibroblasts, and displayed identical migration in two-dimensional gel electrophoresis and the same V8 peptide map as the already described hsp 90. We discuss the possibility that the interaction between hsp 90 and steroid hormone-binding subunits may play a role in keeping the receptor in an inactive form.  相似文献   

13.
The transformed glucocorticoid receptor (GR) from rat liver precipitated at 30% saturation of ammonium sulfate and sedimented at 4.3 S on glycerol gradient centrifugation, whereas the nontransformed GR precipitated at higher concentrations of ammonium sulfate (40-50% saturation) and sedimented at 8.6 S on a gradient. Sodium dodecyl sulfate polyacrylamide gel electrophoresis showed that heat shock protein 90 (hsp 90) precipitated at 40-50% saturation of ammonium sulfate. Moreover, hsp 90 and the nontransformed GR were eluted from DEAE high performance ion-exchange chromatography at similar salt concentrations (0.22-0.23 M NaCl), whereas the transformed GR was eluted at 0.1 M NaCl. Therefore, hsp 90 seems to be responsible for the surface charge characteristics of the nontransformed GR.  相似文献   

14.
A cyclic nucleotide-independent protein kinase has been isolated from Drosophila melanogaster by chromatography on phosphocellulose and hydroxylapatite followed by gel filtration and glycerol gradient sedimentation. As determined by sodium dodecyl sulfate gel electrophoresis, the purified enzyme is greater than 95% homogeneous and is composed of two distinct subunits, alpha and beta, having Mr = 36,700 and 28,200, respectively. The native form of the enzyme is an alpha 2 beta 2 tetramer having a Stokes radius of 48 A, a sedimentation coefficient of 6.4 S, and Mr approximately 130,000. The purified kinase undergoes an autocatalytic reaction resulting in the specific phosphorylation of the beta subunit, exhibits a low apparent Km for both ATP and GTP as nucleoside triphosphate donor (17 and 66 microM, respectively), phosphorylates both casein and phosvitin but neither histones nor protamine, modifies both serine and threonine residues in casein, and is strongly inhibited by heparin (I50 = 21 ng/ml). These properties are remarkably similar to those of casein kinase II, an enzyme previously described in several mammalian and avian species. The strong similarities among the insect, avian, and mammalian enzymes suggest that casein kinase II has been highly conserved during evolution.  相似文献   

15.
Previous studies of the anti 8.5S progestin receptor monoclonal antibody KN 382/EC1 showed that it was specific for nontransformed progestin receptors. However, with different methods of tissue disruption and the use of protease inhibitors, we found that other nontransformed steroid receptors formed immune complexes with KN 382/EC1. Binding of the antibody to rabbit uterine estrogen, progestin, and androgen and liver glucocorticoid receptor systems was characterized by sucrose density gradient centrifugation, high-pressure liquid chromatography (HPLC), immunoadsorption, and immunoblotting. Immobilized KN 382/EC1 adsorbed both Mr 59,000 and Mr 92,000 proteins. The Mr 92,000 protein appeared to be bound to the antigenic Mr 59,000 protein, and the two proteins were present in apparently the same stoichiometric relationship in several tissues. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of immunoadsorbed material revealed appreciable amounts of both proteins in testis, stomach, lung, liver, uterus, and kidney. Only trace amounts were found in skeletal or heart muscle, and none was found in blood serum. Cleveland digestion of isolated Mr 59,000 and 92,000 proteins revealed dissimilar peptide constituents. Immunoblots of material from uterus and liver resulted in staining of the Mr 59,000 protein but not the Mr 92,000 protein. We conclude that similar antigenic determinants reside in components of several nontransformed steroid receptors and they reside on an Mr 59,000 protein. It is likely, therefore, that there are common components present in nontransformed steroid receptors.  相似文献   

16.
A magnesium-dependent protein kinase activity was copurified with both the molybdate-stabilized 8S form of the chick oviduct progesterone receptor (PR) and its B subunit. In each case, purification was performed by hormonal affinity chromatography followed by ion-exchange chromatography. The Km(app) values of the phosphorylation reaction for [gamma-32P]ATP and calf thymus histones were approximately 1.3 X 10(-5) M and approximately 1.6 X 10(-5) M, respectively, and only phosphorylated serine residues were found in protein substrates, including PR B subunit. Physicochemical parameters of the enzyme [pI approximately 5.3, Stokes radius approximately 7.2 nm, sedimentation coefficient (S20,w) approximately 5.6 S, and Mr approximately 200,000] were compared to those of purified forms of PR (B subunit, pI approximately 5.3, Stokes radius approximately 6.1 nm, and Mr approximately 110,000; 8S form, Stokes radius approximately 7.7 nm and Mr approximately 240,000). The results suggest that most of the protein kinase activity copurified with both oligomeric and monomeric forms of PR belongs to an enzyme distinct from currently known receptor components. Its physiological significance remains unknown.  相似文献   

17.
Purification and characterization of the human brain insulin receptor   总被引:2,自引:0,他引:2  
The insulin receptor from human brain cortex was purified by a combination monoclonal antibody affinity column and a wheat germ agglutinin column. This purified receptor preparation exhibited major protein bands of apparent Mr = 135,000 and 95,000, molecular weights comparable to those for the alpha and beta subunits of the purified human placental and rat liver receptors. A minor protein band of apparent Mr = 120,000 was also observed in the brain receptor preparation. Crosslinking of 125I-insulin to all three receptor preparations was found to preferentially label a protein of apparent Mr = 135,000. In contrast, cross-linking of 125I-labeled insulin-like growth factor I to the brain preparation preferentially labeled the protein of apparent Mr = 120,000. The purified brain insulin receptor was found to be identical with the placental insulin receptor in the amount of neuraminidase-sensitive sialic acid and reaction with three monoclonal antibodies to the beta subunit of the placental receptor. In contrast, a monoclonal antibody to the insulin binding site recognized the placental receptor approximately 300 times better than the brain receptor. These results indicate that the brain insulin receptor differs from the receptor in other tissues and suggests that this difference is not simply due to the amount of sialic acid on the receptor.  相似文献   

18.
The mitochondrial F1-ATPase from bean (Vicia faba L.) was solubilized by a chloroform treatment of mitochondrial membranes and purified by centrifugation on a glycerol gradient. The active fraction contained 5 subunits: alpha (Mr = 52,000), beta (Mr = 51,000), gamma (Mr = 34,000), delta (Mr = 23,800), and epsilon (Mr = 22,900). Purified coupled mitochondria were incubated in the presence of [ 35S ]methionine and malate to allow mitochondrial translation to occur. The largest labeled polypeptide (Mr = 52,000) was present in the chloroform extract, co-sedimented with the F1-ATPase on glycerol gradient and co-migrated with the alpha subunit upon two-dimensional electrophoresis. The results indicate that the alpha subunit of bean mitochondrial ATPase is translated on mitoribosomes, in contrast to the situation in other organisms.  相似文献   

19.
The molybdate-stabilized nontransformed form of the glucocorticoid receptor from rabbit liver has been purified approximately 8,000-fold by a three-step procedure. The first step involved protamine sulfate precipitation which allowed a 5-6-fold purification with 85% yield. The second step, affinity chromatography using a N-(12-dodecyl-amino) 9 alpha-fluoro-16 alpha-methyl-11 beta, 17 alpha-dihydroxy-3-oxo-1,4-androstadiene-17 beta-carboxamide substituted Sepharose gel, purified the receptor 1,500-2,000-fold as calculated by specific radioactivity. The third step involved high performance liquid chromatography resulting in overall purification near 8,000-fold. The final glucocorticoid receptor appeared about 60% pure. The purified nontransformed glucocorticoid receptor had a sedimentation coefficient of 9 S in 0.16 M phosphate containing 5-20% sucrose gradients and the Stokes radius was 6.1-6.3 nm as determined by low pressure gel filtration and HPLC. Binding specificity of the purified receptor was identical to that previously reported in crude rabbit liver cytosol. Isoelectricfocusing and ion-exchange chromatography showed that the purification procedure affected the net charge of the receptor protein. This phenomenon could be related to interactions between the glucocorticoid receptor and cytosolic factors. SDS polyacrylamide gel electrophoresis showed a major Mr = 94,000 protein band which is in good agreement with previously reported values for glucocorticoid receptors. Transformation of the purified receptor was achieved after removal of molybdate by exposure at 25 degrees C to 0.4 M KCl. Characterization of the molecular forms was performed by means of incorporation into isolated nuclei, affinity towards polyanionic exchangers and high pressure size exclusion chromatography. Results show that about 40% of the receptor is in the transformed state.  相似文献   

20.
A low concentration estrogen-derivatized affinity resin has been used in a rapid, single step purification of the untransformed estrogen receptor from calf uterine cytosols prepared without sodium molybdata. The procedure isolates the Mr 65,000 estrogen receptor in association with the bovine heat shock protein hsp90. Small amounts of proteolyzed receptor ranging in size from Mr 50,000 to 60,000 are also present in the purified extracts. Results from affinity chromatography of receptor cytosols either untreated or presaturated with estradiol suggest that two proteins of Mr 22,000 and 38,000 are co-purified with the untransformed receptor complex and may represent additional nonhormone-binding components of the native receptor form. Some indication of the stability of protein-protein interactions within the oligomeric complex has been derived from differential salt elution studies with heparin-sepharose and affinity gel-immobilized untransformed receptor. On size exclusion high performance liquid chromatography the untransformed complex eluted with a Stokes radius of 75 +/- 2 A (n = 18), but was shown to be sensitive to extended ultracentrifugal analysis dissociating to the receptor homodimer, sedimentation coefficient 5.3 +/- 0.3 s (n = 5). Preliminary data on urea- and heat-induced transformation of the isolated receptor to the DNA-binding state is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号