首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Escherichia coli acetyl coenzyme A carboxylase (ACC), the first enzyme of the fatty acid biosynthetic pathway, is inhibited by acylated derivatives of acyl carrier protein (ACP). ACP lacking an acyl moiety does not inhibit ACC. Acylated derivatives of ACP having chain lengths of 6 to 20 carbon atoms were similarly inhibitory at physiologically relevant concentrations. The observed feedback inhibition was specific to the protein moiety, as shown by the inability of the palmitoyl thioester of spinach ACP I to inhibit ACC.  相似文献   

2.
D E Myers  B Tolbert  M F Utter 《Biochemistry》1983,22(22):5090-5096
Chicken liver pyruvate carboxylase has an absolute requirement for short-chain acyl coenzyme A (CoA), whereas the same enzyme from yeast has less stringent requirements. The yeast enzyme has now been studied in an effort to elucidate the mechanism by which acyl-CoA stimulates pyruvate carboxylase activity. Yeast pyruvate carboxylase has an apparent basal level of activity above which CoA and acyl-CoAs of 2-20 carbons activate; the concentration of acyl-CoA required for half-maximum activation (K0.5) decreases as the chain length of the acyl moiety increases to 16 carbons. Activation of yeast pyruvate carboxylase by acyl-CoA is brought about in part by increasing the affinity of pyruvate carboxylase for two substrates, bicarbonate and pyruvate. The affinity of pyruvate carboxylase for bicarbonate is also increased by potassium ions. The observation of only low levels of activity in the absence of acyl-CoA or potassium ion leads to the conclusion that the basal activity so frequently referred to is probably due to the presence of activating monovalent cations. Pyruvate carboxylase from yeast probably has an absolute requirement for monovalent cations or acyl-CoA with a combination of the two being required for optimum conditions for maximal activity. Stimulation by acyl-CoA and inhibition by aspartate are mutually antagonistic with each affecting the activation or inhibition constant and the degree of cooperativity brought about by the other. The enzyme from liver is unaffected by aspartate.  相似文献   

3.
E Ryder  G Campos 《Enzyme》1977,22(3):145-150
It has been suggested that the carbohydrate-rich diet of chicks after hatching is responsible for the emergence of hepatic enzymes involved in lipogenesis; the injection of glucose to newly hatched chicks gives rise to an appreciable elvation on the activities of acetyl coenzyme A carboxylase and fatty acid synthetase. The present study shows that during the first hours after hatching, there is a natural elevation of glycemia which parallels the increase in acetyl coenzyme A carboxylase activity. However, the administration of hormones which alter the blood glucose levels considerably (insulin, tolbutamide, glucagon and hydrocortisone) did not influence the enzyme activity. The administration of thyroxine, estradiol and cyclic AMP, was also without effect. These results do not support the theory that the increased amount of blood glucose is the natural effector of the induction acetyl coenzyme A carboxylase. They also show that different lipogenic enzymes are not regulated via the same 'operon' since thyroxine or glucagon which alter the level of some enzymes on this pathway did not modify that of the acetyl coenzyme A carboxylase.  相似文献   

4.
Pyruvate-dependent CO2 fixation by isolated mitochondria was strongly inhibited by sodium benzoate. Pyruvate carboxylase was identified as a site of inhibition by limiting flux measurements to assays of pyruvate carboxylase coupled with malate dehydrogenase. Benzoate reduced pyruvate-dependent incorporation of [14C]KHCO3 into malate and pyruvate-dependent malate accumulation by 74 and 72%, respectively. Aspartate-dependent malate accumulation was insensitive to benzoate, ruling out malate dehydrogenase as a site of action. Inhibition by benzoate was antagonized by glycine, which sharply accelerated conversion of benzoate to hippurate. Assays of coenzyme A and its acyl derivatives revealed inhibition to correlate with depletion of acetyl CoA and accumulation of benzoyl CoA. Depletion of acetyl CoA was sufficient to account for greater than 50% reduction in pyruvate carboxylase activity. Competition between acetyl CoA and benzoyl CoA for the activator site on pyruvate carboxylase was insignificant. Results support the interpretation that the observed inhibition of pyruvate carboxylase occurred primarily by depletion of the activator, acetyl CoA, through sequestration of coenzyme A during benzoate metabolism.  相似文献   

5.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.  相似文献   

6.
Phosphorylation and inactivation of acetyl-coenzyme A (CoA) carboxylase by acetyl-CoA carboxylase kinase in the presence of ATP and Mg2+ requires coenzyme A. Coenzyme A did not enhance the phosphorylation of alternative substrates of the carboxylase kinase such as protamine or histones. Analogs of coenzyme A were also effective in stimulating the inactivation of carboxylase. The KA of CoA for stimulated carboxylase inactivation was 25 microM. The presence of coenzyme A did not alter the Km of the carboxylase kinase for its substrates, ATP and acetyl-CoA carboxylase. Fluorescence binding studies showed that CoA binds to carboxylase but not to the kinase. The KD of CoA binding to carboxylase is 27 microM. These results indicate that coenzyme A, acting on acetyl-CoA carboxylase, may play an important role in the regulation of the covalent modification mechanism for acetyl-CoA carboxylase.  相似文献   

7.
The adenine nucleotide translocase was purified from bovine heart mitochondria and incorporated into membranes of phospholipid liposomes. The rate of transport of the adenine nucleotides was competitively inhibited by oleoyl coenzyme A with an approximate Ki of 1.0 microM. Significant inhibition was limited to those fatty acyl coenzyme A esters which are carnitine dependent for their oxidation in isolated mitochondria. Octanoyl coenzyme A was almost completely inactive as was palmitic acid and palmitoyl carnitine. By comparing the inhibitory characteristics of carboxyatractylate and bongkrekic acid with those of oleoyl-CoA, it was determined that the fatty acyl-CoA esters could produce inhibition whether the carrier was inserted into the liposome in either the conventional (65%) or reverse (30%) orientation. The results demonstrate that the interaction of long chain fatty acyl-CoA esters with the ADP/ATP carrier in a purified reconstituted system mimics their effects with isolated mitochondria and inverted submitochondrial particles. In general, these findings are consistent with the role of acyl-CoA esters acting as natural ligands and biological effectors of the translocator.  相似文献   

8.
Rat liver lipoyl transacetylase catalyzes the formation of acetyl dihydrolipoic acid from acetyl coenzyme A and dihydrolipoic acid. In an earlier paper the formation of acetyl dihydrolipoic from pyruvate and dihydrolipoic acid catalyzed by pyruvate dehydrogenase has been reported. Acetyl dihydrolipoic acid is a substrate for citrate synthase, acetyl coenzyme A carboxylase and fatty acid synthetase. The Vmax. for citrate synthase with acetyl dihydrolipoic acid was identical to acetyl coenzyme A (approximately 1 μmol citrate formed/min/mg protein) while the apparent Km was approximately 4 times higher with acetyl dihydrolipoic acid as the substrate. This may be due to the fact that synthetic acetyl dihydrolipoic acid is a mixture of 4 possible isomers and only one of them may be the substrate for the enzymatic reaction. While dihydrolipoic acid can replace coenzyme A in the activation of succinate catalyzed by succinyl coenzyme A synthetase, the transfer of coenzyme A between succinate and acetoacetyl dihydrolipoic acid catalyzed by succinyl coenzyme A: 3 oxo-acid coenzyme A transferase does not occur.  相似文献   

9.
S W Weidman  G R Drysdale 《Biochemistry》1979,18(17):3822-3827
Electron paramagnetic resonance studies have indicated that nitrosodisulfonate binds to pig heart citrate synthase. Titration of the enzyme with nitrosodisulfonate revealed several binding sites for the probe per subunit with one site (KD approximately 0.1 mM) having a greater affinity than the others. The substrate, oxaloacetate, competed very effectively for one of the nitrosodisulfonate binding sites (KD less than 10(-2) mM) at the same time eliminating the weaker probe binding sites. Citrate and (R)- and (S)-malates also displaced the probe. Failure to resolve low- and high-field shoulder in the high gain--high modulation electron paramagnetic resonance spectra of the enzyme--nitrosodisulfonate system indicated that the bound probe was "weakly immobilized". However, the electron paramagnetic resonance spectrum of the bound probe changed to one typical of a "strongly immobilized" nitroxide upon the addition of a saturating concentration of the substrate acetyl coenzyme A (acetyl-CoA) to the enzyme--nitrosodisulfonate system, indicating the formation of a ternary acetyl-CoA-enzyme-probe complex. Titration of the acetyl-CoA saturated enzyme with the probe indicated one binding site per subunit (KD = 0.37 mM). Thus, nitrosodisulfonate may be considered as a paramagnetic analogue of oxaloacetate in its interaction with citrate synthase. These results are compared with our previous studies with this enzyme, employing a spin-labeled acyl coenzyme A (acyl-CoA) derivative [Weidman, S. W., Drysdale, G. R., & Mildvan, A. S. (1973) Biochemistry 12, 1874--1883].  相似文献   

10.
A hormonally induced change in the covalent phosphorylation state of several enzymes is generally regarded as an important mechanism for hormonal modulation of enzyme activity. We have previously demonstrated that epinephrine stimulates the phosphorylation of a peptide of Mr = 220,000 in adipocytes. Incubation of 32P-labeled cytosolic proteins from adipocytes and hepatocytes with antisera raised against homogeneous chicken and rat liver acetyl coenzyme A carboxylase results in the specific and complete precipitation of the same phosphopeptide. No other major phosphopeptide is specifically precipitated. In hepatocytes, glucagon stimulates the incorporation of 32P into this peptide associated with an inhibition of enzyme activity. These data, coupled with previous studies in adipocytes, suggest that cyclic AMP-dependent protein phosphorylation plays a major role in the regulation of acetyl-CoA carboxylase activity and of fatty acid biosynthesis in adipose tissue and liver.  相似文献   

11.
1. Acetyl-CoA carboxylase activity was measured in extracts of rat epididymal fat-pads either on preparation of the extracts (initial activity) or after incubation of the extracts with citrate (total activity). In the presence of glucose or fructose, brief exposure of pads to insulin increased the initial activity of acetyl-CoA carboxylase; no increase occurred in the absence of substrate. Adrenaline in the presence of glucose and insulin decreased the initial activity. None of these treatments led to a substantial change in the total activity of acetyl-CoA carboxylase. A large decrease in the initial activity of acetyl-CoA carboxylase also occurred with fat-pads obtained from rats that had been starved for 36h although the total activity was little changed by this treatment. 2. Conditions of high-speed centrifugation were found which appear to permit the separation of the polymeric and protomeric forms of the enzyme in fat-pad extracts. After the exposure of the fat-pads to insulin (in the presence of glucose), the proportion of the enzyme in the polymeric form was increased, whereas exposure to adrenaline (in the presence of glucose and insulin) led to a decrease in enzyme activity. 3. These changes are consistent with a role of citrate (as activator) or fatty acyl-CoA thioesters (as inhibitors) in the regulation of the enzyme by insulin and adrenaline; no evidence that the effects of these hormones involve phosphorylation or dephosphorylation of the enzyme could be found. 4. Changes in the whole tissue concentration of citrate and fatty acyl-CoA thioesters were compared with changes in the initial activity of acetyl-CoA carboxylase under a variety of conditions of incubation. No correlation between the citrate concentration and the initial enzyme activity was evident under any condition studied. Except in fat-pads which were exposed to insulin there was little inverse correlation between the concentration in the tissue of fatty acyl-CoA thioesters and the initial activity of acetyl-CoA carboxylase. 5. It is suggested that changes in the concentration of free fatty acyl-CoA thioesters (which may not be reflected in whole tissue concentrations of these metabolites) may be important in the regulation of the activity of acetyl-CoA carboxylase. The possibility is discussed that the concentration of free fatty acyl-CoA thioesters may be controlled by binding to a specific protein with properties similar to albumin.  相似文献   

12.
Citrate synthase (EC 4.1.3.7) was prepared from nine species of blue-green bacteria. In every case the citrate synthase was of the large type otherwise found only in Gram-negative bacteria.In addition to inhibition by -oxoglutarate, the enzymes were all sensitive to inhibition by succinyl coenzyme A, acting competitively with respect to acetyl coenzyme A. Desensitization by potassium chloride and a sigmoidal dependence of inhibition on succinyl coenzyme A concentration suggested the possibility of an allosteric mechanism. Multiple-inhibition analysis using pairs of the competitive inhibitors succinyl coenzyme A, bromoacetyl coenzyme A and ATP confirmed the existence of a distinct site for succinyl coenzyme A.It is suggested that the specific sensitivity of bluegreen bacterial citrate synthases to succinyl coenzyme A, as well as to -oxoglutarate, is related to the particular metabolic role of the enzyme in these organisms. The absence of a complete energy-yielding citric acid cycle, resulting from the lack of -oxoglutarate dehydrogenase, confers a strictly biosynthetic role on citrate synthase, which initiates a branched pathway leading to the two end-products -oxoglutarate and succinyl coenzyme A. Inhibition of the enzyme by these compounds constitutes a plausible regulatory mechanism.  相似文献   

13.
We have previously reported that chronic valproate administration reduced ketonemia in suckling mice and fasting epileptic children. The present study demonstrates that even a single dose of valproate in the therapeutic range for man caused a prolonged reduction of plasma beta-hydroxybutyrate levels in normal infant mice; the plasma glucose concentration was also significantly lowered. In the livers of these animals, there were extraordinary decreases in levels of free coenzyme A, acetyl CoA and free carnitine. Concomitantly concentrations of acid-soluble fatty acid (short-chain, non-acetyl) coenzyme A esters and of acid-insoluble (long-chain) fatty acid carnitine esters increased. There was evidence for inhibition of the metabolic flux through the Krebs citric acid cycle at those enzyme reactions which require coenzyme A. While valproate doubled liver alanine levels, concentrations of liver aspartate, glutamate and glutamine were reduced. All of the valproate-induced metabolite changes can be explained by the decrease of coenzyme A due to the accumulation of acid-soluble (non-acetyl) coenzyme A esters (presumably valproyl CoA and further metabolites). Decreased coenzyme A would limit the activities of one or more enzymes in the pathway of fatty acid oxidation and the Krebs citric acid cycle. Secondary decreases in acetyl CoA would limit both ketogenesis and gluconeogenesis. Decreased levels of selected hepatic amino acids could reflect their use as alternative fuels. The effect of clinical doses of valproate in infant mice may relate to the valproate-associated syndrome of hepatic failure and Reye-like encephalopathy in some infants and children and suggest a simple screen for those who may be at particular risk.  相似文献   

14.
The conditional mRNA transport mutant of Saccharomyces cerevisiae, acc1-7-1 (mtr7-1), displays a unique alteration of the nuclear envelope. Unlike nucleoporin mutants and other RNA transport mutants, the intermembrane space expands, protuberances extend from the inner membrane into the intermembrane space, and vesicles accumulate in the intermembrane space. MTR7 is the same gene as ACC1, encoding acetyl coenzyme A (CoA) carboxylase (Acc1p), the rate-limiting enzyme of de novo fatty acid synthesis. Genetic and biochemical analyses of fatty acid synthesis mutants and acc1-7-1 indicate that the continued synthesis of malonyl-CoA, the enzymatic product of acetyl-CoA carboxylase, is required for an essential pathway which is independent from de novo synthesis of fatty acids. We provide evidence that synthesis of very-long-chain fatty acids (C26 atoms) is inhibited in acc1-7-1, suggesting that very-long-chain fatty acid synthesis is required to maintain a functional nuclear envelope.  相似文献   

15.
Pathogenic mycobacteria contain a variety of unique fatty acids that have methyl branches at an even-numbered position at the carboxyl end and a long n-aliphatic chain. One such group of acids, called mycocerosic acids, is found uniquely in the cell wall of pathogenic mycobacteria, and their biosynthesis is essential for growth and pathogenesis. Therefore, the biosynthetic pathway of the unique precursor of such lipids, methylmalonyl coenzyme A (CoA), represents an attractive target for developing new antituberculous drugs. Heterologous protein expression and purification of the individual subunits allowed the successful reconstitution of an essential acyl-CoA carboxylase from Mycobacterium tuberculosis, whose main role appears to be the synthesis of methylmalonyl-CoA. The enzyme complex was reconstituted from the alpha biotinylated subunit AccA3, the carboxyltransferase beta subunit AccD5, and the epsilon subunit AccE5 (Rv3281). The kinetic properties of this enzyme showed a clear substrate preference for propionyl-CoA compared with acetyl-CoA (specificity constant fivefold higher), indicating that the main physiological role of this enzyme complex is to generate methylmalonyl-CoA for the biosynthesis of branched-chain fatty acids. The alpha and beta subunits are capable of forming a stable alpha6-beta6 subcomplex but with very low specific activity. The addition of the epsilon subunit, which binds tightly to the alpha-beta subcomplex, is essential for gaining maximal enzyme activity.  相似文献   

16.
The uptake in vitro of glucose (Glc)-6-phosphate (Glc-6-P) into plastids from the roots of 10- to 14-d-old pea (Pisum sativum L. cv Puget) plants was inhibited by oleoyl-coenzyme A (CoA) concentrations in the low micromolar range (1--2 microM). The IC(50) (the concentration of inhibitor that reduces enzyme activity by 50%) for the inhibition of Glc-6-P uptake was approximately 750 nM; inhibition was reversed by recombinant rapeseed (Brassica napus) acyl-CoA binding protein. In the presence of ATP (3 mM) and CoASH (coenzyme A; 0.3 mM), Glc-6-P uptake was inhibited by 60%, due to long-chain acyl-CoA synthesis, presumably from endogenous sources of fatty acids present in the preparations. Addition of oleoyl-CoA (1 microM) decreased carbon flux from Glc-6-P into the synthesis of starch and through the oxidative pentose phosphate (OPP) pathway by up to 73% and 40%, respectively. The incorporation of carbon from Glc-6-P into fatty acids was not detected under any conditions. Oleoyl-CoA inhibited the incorporation of acetate into fatty acids by 67%, a decrease similar to that when ATP was excluded from incubations. The oleoyl-CoA-dependent inhibition of fatty acid synthesis was attributable to a direct inhibition of the adenine nucleotide translocator by oleoyl-CoA, which indirectly reduced fatty acid synthesis by ATP deprivation. The Glc-6-P-dependent stimulation of acetate incorporation into fatty acids was reversed by the addition of oleoyl-CoA.  相似文献   

17.
Insulin and the regulation of adipose-tissue acetyl-coenzyme A carboxylase   总被引:24,自引:21,他引:3  
Rat epididymal fat-pads were incubated for 30min with glucose (2mg/ml) in the presence or absence of insulin. A twofold or greater increase in acetyl-CoA carboxylase activity was observed in extracts from insulin-treated tissue provided that assays were performed rapidly after extraction. This effect of insulin was evident whether or not extracts were prepared with albumin, and was not noticeably diminished by the presence of citrate or albumin or both in the assay. Incubation of extracts before assay led to activation of acetyl-CoA carboxylase and a marked diminution in the insulin effect. The enzyme in extracts was very sensitive to reversible inhibition by palmitoyl-CoA even in the presence of albumin (10mg/ml); inhibition persisted on dilution of enzyme and inhibitor. It is suggested that the observed activation of acetyl-CoA carboxylase by insulin may reflect changes in enzyme activity in the fat-cell resulting from the reduction of long-chain fatty-acyl-CoA that occurs in the presence of insulin. Activation of the enzyme with loss of the insulin effect on incubation of the extracts may be due to the slow dissociation of long-chain fatty acyl-CoA from the enzyme.  相似文献   

18.
The inhibitory effects of ATP, coenzyme A, and acetyl, malonyl, and oleyl derivatives of coenzyme A on the TPN and DPN dependent activities of Leuconostoc glucose-6-phosphate dehydrogenase are compared. At pH 7.8, 24°, saturating levels of DPN or TPN, and inhibitor concentrations of 2–4 mM only ATP has an appreciable effect on the TPN dependent reaction, but all were potent inhibitors of the DPN dependent reaction. Oleyl coenzyme A was the most effective (Ki ~ 0.15 mM against glucose-6-phosphate) while acetyl coenzyme A was least effective (Ki ~ 1.0 mM). A possible regulatory role of this inhibition in fatty acid synthesis is suggested.  相似文献   

19.
A multisubunit acetyl coenzyme A carboxylase from soybean   总被引:8,自引:0,他引:8  
A multisubunit form of acetyl coenzyme A (CoA) carboxylase (ACCase) from soybean (Glycine max) was characterized. The enzyme catalyzes the formation of malonyl CoA from acetyl CoA, a rate-limiting step in fatty acid biosynthesis. The four known components that constitute plastid ACCase are biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and the alpha- and beta-subunits of carboxyltransferase (alpha- and beta-CT). At least three different cDNAs were isolated from germinating soybean seeds that encode BC, two that encode BCCP, and four that encode alpha-CT. Whereas BC, BCCP, and alpha-CT are products of nuclear genes, the DNA that encodes soybean beta-CT is located in chloroplasts. Translation products from cDNAs for BC, BCCP, and alpha-CT were imported into isolated pea (Pisum sativum) chloroplasts and became integrated into ACCase. Edman microsequence analysis of the subunits after import permitted the identification of the amino-terminal sequence of the mature protein after removal of the transit sequences. Antibodies specific for each of the chloroplast ACCase subunits were generated against products from the cDNAs expressed in bacteria. The antibodies permitted components of ACCase to be followed during fractionation of the chloroplast stroma. Even in the presence of 0.5 M KCl, a complex that contained BC plus BCCP emerged from Sephacryl 400 with an apparent molecular mass greater than about 800 kD. A second complex, which contained alpha- and beta-CT, was also recovered from the column, and it had an apparent molecular mass of greater than about 600 kD. By mixing the two complexes together at appropriate ratios, ACCase enzymatic activity was restored. Even higher ACCase activities were recovered by mixing complexes from pea and soybean. The results demonstrate that the active form of ACCase can be reassembled and that it could form a high-molecular-mass complex.  相似文献   

20.
1. Although citrate is known to activate purified preparations of acetyl-CoA carboxylase, it had no stimulatory effect on the incorporation of [14C]acetate into long-chain fatty acids in a whole homogenate of rat liver (S0.7) under conditions in which the activity of acetyl-CoA carboxylase was rate-limiting for fatty acid synthesis. 2. The rate of incorporation of acetyl carbon into fatty acids was estimated in S0.7 preparations incubated with [14C]acetate, by measuring the specific radioactivity of the acetyl carbon of acetyl-CoA and the incorporation of 14C into fatty acids. These estimates were compared with estimates of acetyl-CoA carboxylase activity in the S0.7 preparation obtained by direct assay in conditions in which the enzyme was in the fully activated state. 3. In the absence of citrate, incorporation of acetyl carbon into fatty acids was about 75% of the value expected if the acetyl-CoA carboxylase in the S0.7 preparation were in the fully activated state. 4. Incorporation of acetyl carbon into fatty acids in the S0.7 preparation was stimulated by citrate, but the effect was many times less than the stimulation of [14C]acetate incorporation by citrate in particle-free preparations. 5. When the mitochondria and microsomes were removed from the S0.7 preparation, [14C]acetate incorporation into fatty acids fell to a negligible value and the preparation became highly sensitive to stimulation by citrate. 6. It is suggested that in the presence of mitochondria and microsomes, and in the intact liver cell, the degree of activation of acetyl-CoA carboxylase is such that citrate activation may not be of physiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号