首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
J Kuret  H Schulman 《Biochemistry》1984,23(23):5495-5504
A soluble Ca2+/calmodulin-dependent protein kinase has been purified from rat brain to near homogeneity by using casein as substrate. The enzyme was purified by using hydroxylapatite adsorption chromatography, phosphocellulose ion-exchange chromatography, Sepharose 6B gel filtration, affinity chromatography using calmodulin-Sepharose 4B, and ammonium sulfate precipitation. On sodium dodecyl sulfate (NaDodSO4)-polyacrylamide gels, the purified enzyme consists of three protein bands: a single polypeptide of 51 000 daltons and a doublet of 60 000 daltons. Measurements of the Stokes radius by gel filtration (81.3 +/- 3.7 A) and the sedimentation coefficient by sucrose density sedimentation (13.7 +/- 0.7 S) were used to calculate a native molecular mass of 460 000 +/- 29 000 daltons. The kinase autophosphorylated both the 51 000-dalton polypeptide and the 60 000-dalton doublet, resulting in a decreased mobility in NaDodSO4 gels. Comparison of the phosphopeptides produced by partial proteolysis of autophosphorylated enzyme reveals substantial similarities between subunits. These patterns, however, suggest that the 51 000-dalton subunit is not a proteolytic fragment of the 60 000-dalton doublet. Purified Ca2+/calmodulin-dependent casein kinase activity was dependent upon Ca2+, calmodulin, and ATP X Mg2+ or ATP X Mn2+ when measured under saturating casein concentrations. Co2+, Mn2+, and La3+ could substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations. In addition to casein, the purified enzyme displayed a broad substrate specificity which suggests that it may be a "general" protein kinase with the potential for mediating numerous processes in brain and possibly other tissues.  相似文献   

2.
Tryptophan hydroxylase is activated in a crude extract by addition of ATP and Mg2+. This activation is reversible and requires in addition both Ca2+ and calmodulin. Thus, phosphorylation by an endogenous calmodulin-dependent protein kinase has long been suspected. Now that we have prepared a specific polyclonal antibody to rat brain tryptophan hydroxylase, we have been able to prove that this hypothesis is correct. After incubation of purified tryptophan hydroxylase with Ca2+/calmodulin-dependent protein kinase together with [gamma-32P]ATP, Mg2+, Ca2+, and calmodulin, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and blotting of the enzymes onto nitrocellulose sheets, we could label the band of tryptophan hydroxylase by the antiserum and the peroxidase technique and show by autoradiography that 32P was incorporated into this band. By measuring the radioactivity, we calculated that about 1 mol of phosphate was incorporated per 8 mol of subunits of the enzyme (2 mol of native enzyme). Because the concentration of ATP which we employed (50 microM) gives about half-maximal activation in crude extract compared to saturating ATP conditions (about 1 mM), this result indicates that the incorporation of at least 1 mol of phosphate/mol of tetramer of native tryptophan hydroxylase is required for maximal activation.  相似文献   

3.
A calmodulin-dependent protein kinase has been purified from rat spleen. The enzyme showed a remarkably similar substrate specificity and kinetic parameters to those of rat brain calmodulin-dependent protein kinase II, and exhibited cross-reactivity to a monoclonal antibody against rat brain calmodulin-dependent protein kinase II, indicating that the enzyme might be a calmodulin-dependent protein kinase II isozyme. The sedimentation coefficient was 13.9S, the Stokes radius was 67 A, and the molecular weight was calculated to be 380,000. The purified enzyme gave five polypeptides bands, corresponding to molecular weights of 51,000, 50,000, 21,000, 20,000, and 18,000, on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Incubation of the purified enzyme with Ca2+, calmodulin, and ATP under phosphorylating conditions induced the phosphorylation of all five polypeptides. When the logarithm of the velocity of the phosphorylation was plotted against the logarithm of the enzyme concentration (van't Hoff plot), slopes of 0.89, 0.94, and 1.1 were obtained for the phosphorylation of the 50/51-kDa doublet, 20/21-kDa doublet, and 18-kDa polypeptide, respectively. These results indicate that the phosphorylation of the five polypeptides is an intramolecular process, and further indicate that all five polypeptides are subunits of this enzyme. Of the five polypeptides, only the 50- and 51-kDa polypeptides bound to [125I]calmodulin, the other polypeptides not binding to it. A number of isozymic forms of calmodulin-dependent protein kinase II so far demonstrated in various tissues are known to be composed of subunits with molecular weights of 50,000 to 60,000 which can bind to calmodulin. Thus a new type of calmodulin-dependent protein kinase II was demonstrated in the present study.  相似文献   

4.
Flavin adenine dinucleotide synthetase (ATP:FMN adenylyltransferase, EC 2.7.7.2) was purified about 10,000-fold from the high-speed supernatant of rat liver by a sequence of ammonium sulfate fractionation and column chromatographies on DEAE-Sephadex (A-50), chromatofocusing, FMN-agarose affinity, and Sephadex G-200. The specific activity of the purified enzyme was 133 units (nanomoles of FAD formed per min at 37 degrees C)/mg of protein. This preparation was free from contaminating FAD pyrophosphatase. The apparent molecular weight was estimated to be 97,000 by gel filtration on Sephadex G-200. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed an apparent subunit molecular weight of 53,000. Hence, the enzyme is a dimer of approximately 100,000. The enzyme was found most active at pH 7.1, requires Mg2+, and is essentially irreversible in the direction of FAD formation. Kinetic analysis gave Km values of 9.6 microM for FMN and 53 microM for ATP.  相似文献   

5.
A new Ca2+-binding protein, different from calmodulin, has been detected in the cilium and cell body of Tetrahymena. This protein, designated as TCBP-10, has been purified from the cells to homogeneity. TCBP-10 is an acidic protein (pI = 4.5) which shows a Ca2+-dependent mobility shift in alkali-glycerol-polyacrylamide gel electrophoresis. The protein is resistant to heat and trichloroacetic acid. The molecular weight of the protein is 10,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 22,000 by Sephadex G-50 gel filtration, suggesting that the native form of the protein is a dimer. The protein has a molar extinction coefficient of 6,500 at 282 nm. Equilibrium dialysis experiments revealed that the protein binds 1 mol of Ca2+/mol of protein with a dissociation constant of 27 microM. The protein contains a relatively large quantity of acidic amino acids, single residues of cysteine, histidine, and tryptophan, and no methionine. These properties are similar to those of some low molecular weight Ca2+-binding proteins belonging to the calmodulin family. Thus, the cilium of Tetrahymena contains a second Ca2+-binding protein in addition to calmodulin. We consider that TCBP-10 and calmodulin may play important cooperative roles in the Ca2+-regulation of ciliary movement in Tetrahymena.  相似文献   

6.
Calcium binding activity in the 100,000 X g supernatant of bovine liver has been isolated by a procedure involving DEAE cellulose and Sephadex G-100 chromatography. In addition to calmodulin, two new high affinity calcium binding proteins have been identified. On gel filtration chromatography these proteins migrate with apparent molecular weights of 83,700 and 51,400; whereas by sodium dodecyl sulfate polyacrylamide gel electrophoresis, the two proteins migrate identically with Mr 63,000. In the presence of millimolar Mg2+, both proteins bind up to one mol Ca2+/mol protein. Half-maximal binding occurs at approximately 0.1 microM Ca2+. Amino acid compositional analysis reveals that both proteins are acidic, and contain about 40% glx and asx. Peptide mapping procedures suggest that these proteins may be highly homologous or multiple forms of a single protein. The results show the existence of calcium binding protein(s) other than calmodulin in hepatic cytosol.  相似文献   

7.
A calmodulin-dependent protein phosphatase has been identified in human platelets by its cross-reactivity with an antibody developed against a bovine brain calmodulin-dependent protein phosphatase and by its calmodulin-stimulated dephosphorylation of 32P-labeled substrates. The platelet enzyme was partially purified to separate it from calmodulin and calmodulin-independent phosphatases. The partially purified enzyme was stimulated by calmodulin, requiring 15 nM calmodulin for half-maximal activation. Calmodulin increased the Vmax of the phosphatase, with no significant effect on its Km. The enzyme was stimulated irreversibly and made calmodulin-independent by limited proteolysis. The optimal pH for the phosphatase was 7.5. After partial purification, phosphatase activity was significantly increased in the presence of Mn2+ and Ca2+ over that observed in the presence of Ca2+ alone. The enzyme effectively dephosphorylated casein, histone, protamine, and platelet actin. The holophosphatase was estimated to have a molecular weight of 76,900 as determined by sedimentation on sucrose gradients. Immunoblotting techniques using an antibody against the brain phosphatase suggests that the enzyme consists of 2 subunits of 60,000 and 16,500 daltons; the 60,000-dalton subunit co-migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a 60,000-dalton calmodulin-binding protein in the platelet suggesting that it is the calmodulin-binding subunit of the enzyme. The identification of a calmodulin-dependent protein phosphatase in human platelets suggests a role for Ca2+-dependent dephosphorylation in platelet activation.  相似文献   

8.
N-Acetylneuraminic acid cytidylyltransferase (EC 2.7.7.43) (CAMP-NeuAc synthetase) from rat liver catalyzes the formation of cytidine monophosphate N-acetylneuraminic acid from CTP and NeuAc. We have purified this enzyme to apparent homogeneity (241-fold) using gel filtration on Sephacryl S-200 and two types of affinity chromatographies (Reactive Brown-10 Agarose and Blue Sepharose CL-6B columns). The pure enzyme, whose amino acid composition and NH2-terminal amino acid sequence are also established, migrates as a single protein band on non-denaturing polyacrylamide gel electrophoresis. The molecular mass of the native enzyme, estimated by gel filtration, was 116 +/- 2 kDa whereas its Mr in sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 58 +/- 1 kDa. CMP-NeuAc synthetase requires Mg2+ for catalysis although this ion can be replaced by Mn2+, Ca2+, or Co2+. The optimal pH was 8.0 in the presence of 10 mM Mg2+ and 5 mM dithiothreitol. The apparent Km for CTP and NeuAc are 1.5 and 1.3 mM, respectively. The enzyme also converts N-glycolylneuraminic acid to its corresponding CMP-sialic acid (Km, 2.6 mM), whereas CMP-NeuAc, high CTP concentrations, and other nucleotides (CDP, CMP, ATP, UTP, GTP, and TTP) inhibited the enzyme to different extents.  相似文献   

9.
Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes   总被引:1,自引:0,他引:1  
The Ca2+-stimulated, Mg2+-dependent ATPase from rat liver plasma membranes was solubilized using the detergent polyoxyethylene 9 lauryl ether and purified by column chromatography using Polybuffer Exchanger 94, concanavalin A-Sepharose 4B, and Sephadex G-200. The molecular weight of the enzyme, estimated by gel filtration in the presence of the detergent on a Sephadex G-200 column, was 200,000 +/- 15,000. The enzyme was purified at least 300-fold from rat liver plasma membranes and had a specific activity of 19.7 mumol/mg/min. Polyacrylamide gel electrophoresis under nondenaturing conditions of the purified enzyme indicated that the enzymatic activity correlated with the major protein band. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, one major band in the molecular weight range of 70,000 +/- 5,000 was seen. The isoelectric point of the purified enzyme was 6.9 +/- 0.2 as determined by analytical isoelectric focusing. The enzyme was activated by Ca2+ with an apparent half-saturation constant of 87 +/- 2 nM for Ca2+. Calmodulin and trifluoperazine at the concentration of 1 microgram/ml and 100 microM, respectively, had no effect on the enzymatic activity.  相似文献   

10.
Protein kinase C (PKC) from bovine neutrophils was purified 1420-fold. Subcellular fractionation analysis of bovine neutrophil homogenate in the presence of EGTA indicated that more than 95% of the PKC activity was present in the soluble fraction. The purification procedure from cytosol involved sequential chromatographic steps on DE-52 cellulose, Mono Q, and phenyl-Sepharose. Whereas bovine brain PKC could be resolved into four isoenzymatic forms by chromatography on a hydroxylapatite column, bovine neutrophil PKC was eluted in a single peak, suggesting that it corresponded to a single isoform. The apparent molecular weight of bovine neutrophil PKC was 82,000, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. By filtration on Sephadex G-150, a molecular weight of 85,000 was calculated, indicating that bovine neutrophil PKC in solution is monomeric. Its isoelectric point was 5.9 +/- 0.1. Bovine neutrophil PKC was autophosphorylated in the presence of [gamma-32P]ATP, provided that the medium was supplemented with Mg2+, Ca2+, phosphatidylserine, and diacylglycerol; phorbol myristate acetate could substitute for diacylglycerol. Autophosphorylated PKC could be cleaved by trypsin to generate two radiolabeled peptides of Mr 48,000 and 39,000. The labeled amino acids were serine and threonine. During the course of the purification procedure of bovine neutrophil PKC, a protein of Mr 23,000, which was abundant in the cytosolic fraction of the homogenate, was found to exhibit a strong propensity to PKC-dependent phosphorylation in the presence of [gamma-32P]ATP, Mg2+, Ca2+, phosphatidylserine, and diacylglycerol. This protein was recovered together with PKC in one of the two active peaks eluted from the Mono Q column at the second step of PKC purification.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
S Kubota  T Onaka  H Murofushi  N Ohsawa  F Takaku 《Biochemistry》1986,25(26):8396-8402
Porcine and bovine brain high Ca2+-requiring neutral proteases were purified to homogeneity by the same isolation procedures, and their properties were compared. A high degree of similarity existed between the two proteases. The purification procedures included ion-exchange chromatography on DEAE-cellulose, hydrophobic chromatography on phenyl-Sepharose CL-4B, second DEAE-cellulose chromatography, second phenyl-Sepharose CL-4B chromatography, and gel filtration on Ultrogel AcA 34. Both purified enzymes were composed of Mr 75,000 and 29,000 subunits, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Both enzymes required 250 microM Ca2+ for half-maximal activity and 700 microM Ca2+ for maximal activity. Sr2+ and Ba2+, but not Mg2+ or Mn2+, also activated both enzymes but not as effectively as Ca2+. Both enzymes displayed maximum activity at pH 7.5-8.0. Leupeptin, antipain, and trans-epoxysuccinyl-L-leucylagmatine inhibited both enzymes. Neurofilament triplet proteins and microtubule-associated proteins were extensively hydrolyzed by both proteases, but tubulin and actin were not hydrolyzed. The amino acid compositions of the two proteases were very similar. Antisera against bovine brain protease cross-reacted with porcine brain protease when examined by immunoelectrotransfer blot techniques.  相似文献   

12.
Two protein phosphatases (enzymes I and II) were extensively purified from wheat embryo by a procedure involving chromatography on DEAE-cellulose, phenyl-Sepharose CL-4B, DEAE-Sephacel and Ultrogel AcA 44. Preparations of enzyme I (Mr 197,000) are heterogeneous. Preparations of enzyme II (Mr 35,000) contain only one major polypeptide (Mr 17,500), which exactly co-purifies with protein phosphatase II on gel filtration and is not present in preparations of enzyme I. However, this major polypeptide has been identified as calmodulin. Calmodulin and protein phosphatase II can be separated by further chromatography on phenyl-Sepharose CL-4B. Protein phosphatases I and II do not require Mg2+ or Ca2+ for activity. Both enzymes catalyse the dephosphorylation of phosphohistone H1 (phosphorylated by wheat-germ Ca2+-dependent protein kinase) and of phosphocasein (phosphorylated by wheat-germ Ca2+-independent casein kinase), but neither enzyme dephosphorylates a range of non-protein phosphomonoesters tested. Both enzymes are inhibited by Zn2+, Hg2+, vanadate, molybdate, F-, pyrophosphate and ATP.  相似文献   

13.
An inhibitor of procine brain calmodulin-dependent cyclic nucleotide phosphodiesterase was purified about 940-fold from rat testis. This inhibitor inhibited the calmodulin-induced activation of the enzyme without affecting its basal activity. The inhibitor activity was counteracted by a high concentration of calmodulin, but was not by a high concentration of Ca2+. The analysis on polyacrylamide disc gel electrophoresis demonstrated that the inhibitor and calmodulin form a complex in the presence of Ca2+ but not in the presence of excess amount of EGTA. This inhibitor also inhibited the calmodulin-induced activation of Ca2+, Mg2+ -ATPase of human erythrocytes. The inhibitor appeared to be a heat-stable protein, since the inhibitor activity was not attenuated by boiling up to 9 min but was completely abolished by tryptic or chymotryptic digestion. The molecular weights of the inhibitor determined by linear polyacrylamide gradient gel electrophoresis under nondenaturing conditions and sodium dodecyl sulfate-polyacrylamide gel electrophoresis were 40,000 and 32,000, respectively. Thus, the inhibitor is suggested to be a calmodulin-binding protein composed of a monomer which has unique properties different from those of other tissues.  相似文献   

14.
An anionic peroxidase (EC 1.11.1.7), thought to be involved in suberization, was purified 110-fold from wound-healing slices of Solanum tuberosum by a combination of ammonium sulfate fractionation, Sephadex G-100 gel filtration, isoelectric focusing, and phenyl-Sepharose CL-4B chromatography in 24% yield. The purified enzyme was homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and horizontal thin-layer polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 47,000 by both Sephadex G-100 gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This peroxidase was found to be a glycoprotein containing about 17% carbohydrate, approximately one-quarter of which was shown to be glucosamine residues. It was found to have an isoelectric point of 3.15. An anionic peroxidase was also isolated from abscisic acid-treated callus tissue culture of S. tuberosum by the above purification procedure. The two enzymes were shown to be immunologically similar, if not identical, based on their cross-reactivity with rabbit antibody prepared against the peroxidase from wound-healing slices, whereas the major cationic peroxidase from wound-healing slices did not cross-react with this antibody. The anionic enzyme from both sources showed very similar specific activities when assayed with a range of substrates, whereas the specific activities found for the cationic isozyme isolated from wound-healing slices were quite different.  相似文献   

15.
Adenosine kinase from human liver   总被引:5,自引:0,他引:5  
Adenosine kinase (ATP: adenosine 5'-phosphotransferase, EC 2.7.1.20) has been purified to homogeneity from human liver. The yield was 55% of the initial activity with a final specific activity of 6.3 mumol/min per mg protein. The molecular weight was estimated as about 40 000 by Sephadex G-100 gel filtration and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS). The enzyme catalyzed the phosphorylation of adenosine, deoxyadenosine, arabinoadenosine, inosine and ribavirin. The activity of deoxyadenosine phosphorylation was 18% of that of adenosine. The pH optimum profile was biphasic; a sharp pH optimum at pH 5.5 and a broad optimum at pH 7.5--8.5. The Km value for adenosine was 0.15 micrometer, and the activity was strongly inhibited at higher concentrations than 0.5 micrometer. ATP, dATP, GTP and dGTP were proved to be effective phosphate donors. Co2+ was more effective than Mg2+, and Ca2+, Mn2+, Fe2+ and Ni2+ showed about 50% of the activity for Mg2+. Some difference in structure between the adenosine kinase from human liver and that from rabbit or rat tissue, was observed by amino acid analysis and peptide mapping analysis.  相似文献   

16.
Staphylococcal L-asparaginase has been purified 400-fold with 40% recovery. The procedure involves ammonium sulphate precipitation and a column chromatography on Sephadex G-200 gel filtration). The enzyme is composed of not identical subunits. protein (pI 4.4) with the approximate molecular weight of 125,000 (estimated by Sephadex G-200 gel filtration). The enzyme is composed of not identical subunits. The polyacrylamide-SDS gel electrophoresis indicated two subunits with molecular weight 18,000 and 22,000.  相似文献   

17.
H C Chang  M S Bergdoll 《Biochemistry》1979,18(10):1937-1942
A method was developed for the isolation of staphylococcal enterotoxin D in highly purified form from cultures of Staphylococcus aureus strain 1151m. The method involves removal of the toxin from the culture supernatant fluid with the ion-exchange resin CG-50 followed by chromatography on carboxymethylcellulose (twice) and by gel filtration on Sephadex G-75 (twice). The purified toxin is homogeneous by polyacrylamide gel and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and double gel diffusion tests. It is a simple, colorless, antigenic protein with an isoelectric point of 7.4 as determined by isoelectric focusing. Its molecular weight was determined to be 27 300 +/- 700 by molecular sieve chromatography on Sephadex G-100 and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Its serological activity is stable over a wide range of pH values (1.2--10.7). The enterotoxin consists of 236 amino acid residues and contains no free sulfhydryl groups. End-group analysis showed serine to be the NH2-terminal amino acid and lysine to be the COOH-terminal amino acid.  相似文献   

18.
A novel protein which represents the most abundant calmodulin-binding protein in bovine heart cytosolic fraction was purified to apparent homogeneity. The purification procedure involved DEAE-Sepharose CL-6B (to remove calmodulin), calmodulin-Sepharose 4B affinity, and Sepharose 6B column chromatographies. This purified calmodulin-binding protein is a highly asymmetric protein with a sedimentation coefficient of approximately 5.0 S and a Stokes radius of about 83.0 A. The molecular weight of the calmodulin-binding protein was determined to be 175,000 from the sedimentation constant and Stokes radius of the protein. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the protein showed a single protein band with an apparent molecular weight of 140,000. The result suggests that the protein is monomeric. Although this molecular weight is similar to that of caldesmon, a known ubiquitous calmodulin-binding protein, the protein did not react with caldesmon-specific antibodies, nor did it display a proteolytic fragmentation pattern similar to that of the former. In addition, caldesmon was found almost exclusively in the particulate fraction in low ionic strength cardiac muscle extract, whereas this protein is purified the soluble fraction.  相似文献   

19.
Nitrate reductase was purified about 3,000-fold from spinach leaves by chromatography on butyl Toyopearl 650-M, hydroxyapatite-brushite, and blue Sepharose CL-6B columns. The purified enzyme yielded a single protein band upon polyacrylamide gel electrophoresis under nondenaturing conditions. This band also gave a positive stain for reduced methylviologen-nitrate reductase activity. The specific NADH-nitrate reductase activities of the purified preparations varied from 80 to 130 units per milligram protein. Sucrose density gradient centrifugation and gel filtration experiments gave a sedimentation coefficient of 10.5 S and a Stokes radius of 6.3 nanometers, respectively. From these values, a molecular weight of 270,000 ± 40,000 was estimated for the native reductase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the denatured enzyme yielded a subunit band having a molecular weight of 114,000 together with a very faint band possessing a somewhat smaller molecular weight. It is concluded that spinach nitrate reductase is composed of two identical subunits possessing a molecular weight of 110,000 to 120,000.  相似文献   

20.
A novel Ca2+-dependent protein kinase from Paramecium tetraurelia   总被引:3,自引:0,他引:3  
The ciliated protozoan Paramecium tetraurelia contained two protein kinase activities that were dependent on Ca2+. We purified one of the enzymes to homogeneity by Ca2+-dependent affinity chromatography on phenyl-Sepharose and ion exchange chromatography. The purified enzyme contained polypeptides of 50 and 55 kDa, with the 50-kDa species predominant. From its Stokes radius (32 A) and sedimentation coefficient (3.9 S), we calculated a native molecular weight of 51,000, suggesting that the active form is a monomer. Its specific activity was 65-130 nmol X min-1 X mg-1 and the Km for ATP was 17-35 microM, depending on the exogenous substrate used. Kinase activity was completely dependent upon Ca2+; half-maximal activation occurred at approximately 1 microM free Ca2+ at pH 7.2. Phosphatidylserine and diacylglycerol did not stimulate activity, nor did the addition of purified Paramecium calmodulin. The enzyme phosphorylated casein and histones, forming primarily phosphoserine and phosphothreonine, respectively. It also catalyzed its own phosphorylation in a Ca2+-dependent reaction; the half-maximal rate of autophosphorylation occurred at approximately 1-1.5 microM free Ca2+, and both the 50- and 55-kDa species were autophosphorylated. After separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and renaturation in situ, the 50-kDa protein retained its Ca2+-dependent ability to phosphorylate casein, suggesting that Ca2+ interacts directly with this polypeptide. This was confirmed by direct binding studies; when the enzyme was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis transferred to nitrocellulose, and renatured, there was 45Ca2+-binding in situ to both the 50- and 55-kDa polypeptides. The Paramecium enzyme appears to be a new and unique type of Ca2+-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号