首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABCG1 promotes cholesterol efflux from cells, but ABCG1(-/-) bone marrow transplant into ApoE(-/-) and LDLr(-/-) mice reduces atherosclerosis. To further investigate the role of ABCG1 in atherosclerosis, ABCG1 transgenic mice were crossed with LDLr-KO mice and placed on a high-fat western diet. Increased expression of ABCG1 mRNA was detected in liver (1.8-fold) and macrophages (2.7-fold), and cholesterol efflux from macrophages to HDL was also increased (1.4-fold) in ABCG1xLDLr-KO vs. LDLr-KO mice. No major differences were observed in total plasma lipids. However, cholesterol in the IDL-LDL size range was increased by approximately 50% in ABCG1xLDLr-KO mice compared to LDLr-KO mice. Atherosclerosis increased by 39% (10.1+/-0.8 vs 6.1+/-0.9% lesion area, p=0.02), as measured by en face analysis, and by 53% (221+/-98 vs 104+/-58x10(3)microm(2), p =0.01), as measured by cross-sectional analysis in ABCG1xLDLr-KO mice. Plasma levels for MCP-1 (1.5-fold) and TNF-alpha (1.2-fold) were also increased in ABCG1xLDLr-KO mice. In summary, these findings suggest that enhanced expression of ABCG1 increases atherosclerosis in LDLr-KO mice, despite its role in promoting cholesterol efflux from cells.  相似文献   

2.
Abnormal lipid metabolism may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH). ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to HDL apolipoproteins. We previously reported that unsaturated fatty acids destabilise ABCA1 in murine macrophages and ABCA1-transfected baby hamster kidney cells by increasing its protein degradation. Here, we examined the correlation between ABCA1 and hepatic lipids. In HepG2 cells, unsaturated but not saturated fatty acids suppressed ABCA1 protein levels by promoting its protein degradation. Over-expression of ABCA1 resulted in a decrease of cellular fatty acids and triglycerides, while repression by ABCA1 siRNA increased both cellular fatty acids and triglycerides. Rats with NASH also showed lower ABCA1 protein levels in liver cells, compared with that of the normal rats. These data indicate that steatosis is associated with a decrease in ABCA1 protein expression leading to an increase in lipid storage in hepatocytes. And it further suggests that this effect could be due to an excess of unsaturated fatty acids.  相似文献   

3.
Paraoxonase (PON1) is a high-density lipoprotein (HDL)-associated enzyme believed to protect against the early events of atherogenesis by its ability to hydrolyze oxidized phospholipids. A transgenic mouse overexpressing PON1 (mPON1) was developed to address the question of whether overexpression of PON1 is important in protecting HDL function during oxidative stress. Transgenic mice were obtained that have up to a 5-fold increase in mPON1 activity measured as arylesterase activity [52.7 +/- 17.3 U/ml versus 251.7 +/- 25.1 U/ml for wild-type (WT) and mPON1 high expressers, respectively]; this increase in mPON1 activity was reflected by a 5.3-fold increase in relative mass of the enzyme. Excess mPON1 was associated solely with HDL but did not alter HDL composition, size, or charge. Lecithin:cholesterol acyltransferase (LCAT) on HDL is a sensitive indicator of oxidative stress; exposure of plasmas from both WT and mPON1 overexpresser mice to 0.4 mM copper ions for 2 h showed a 30-40% protection of LCAT activity in mPON1 overexpressers compared to WT. Excess mPON1 also inhibited lipid hydroperoxide formation on HDL. These data strongly suggest that overexpression of mPON1 protects HDL integrity and function.  相似文献   

4.
5.
ATP binding cassette transporter A1 (ABCA1) is a widely expressed lipid transporter essential for the generation of HDL. ABCA1 is particularly abundant in the liver, suggesting that the liver may play a major role in HDL homeostasis. To determine how hepatic ABCA1 affects plasma HDL cholesterol levels, we treated mice with an adenovirus (Ad)-expressing human ABCA1 under the control of the cytomegalovirus promoter. Treated mice showed a dose-dependent increase in hepatic ABCA1 protein, ranging from 1.2-fold to 8.3-fold using doses from 5 x 108 to 1.5 x 109 pfu, with maximal expression observed on Day 3 posttreatment. A selective increase in HDL cholesterol occurred at Day 3 in mice treated with 5 x 108 pfu Ad-ABCA1, but higher doses did not further elevate HDL cholesterol levels. In contrast, total cholesterol, triglycerides, phospholipids, non-HDL cholesterol, and apolipoprotein B levels all increased in a dose-dependent manner, suggesting that excessive overexpression of hepatic ABCA1 in the absence of its normal regulatory sequences altered total lipid homeostasis. At comparable expression levels, bacterial artificial chromosome transgenic mice, which express ABCA1 under the control of its endogenous regulatory sequences, showed a greater and more specific increase in HDL cholesterol than Ad-ABCA1-treated mice. Our results suggest that appropriate regulation of ABCA1 is critical for a selective increase in HDL cholesterol levels.  相似文献   

6.
Cripto-1 (CR-1) is an epidermal growth factor (EGF)-CFC protein that has been shown to signal through nodal/Alk-4, PI3K/Akt, and/or ras/raf/MEK/MAPK pathways in mammalian cells, and that is frequently expressed in human primary breast carcinomas. In the present study, the human estrogen receptor positive, MCF-7 breast cancer cell line, that expresses low levels of endogenous CR-1, was transfected with a CR-1 expression vector. MCF-7 CR-1 cells expressed high levels of a 25 kDa recombinant CR-1 protein that was not detected in MCF-7 cells transfected with a control vector (MCF-7 neo). Overexpression of CR-1 did not induce an estrogen independent phenotype in MCF-7 cells. In fact, MCF-7 CR-1 cells showed a response to exogenous estrogens that was similar to MCF-7 neo cells, and failed to grow in immunosuppressed mice in absence of estrogen stimulation. However, MCF-7 CR-1 cells showed a rate of proliferation in serum free conditions, and an ability to form colonies in soft-agar that were higher as compared with MCF-7 neo cells. More importantly, overexpression of CR-1 enhanced the resistance to anoikis and the invasion ability of MCF-7 cells. MCF-7 CR-1 cells showed levels of activation of both Akt and Smad-2 that were significantly higher as compared with MCF-7 neo. These findings suggest that CR-1 overexpression might be associated with the progression towards a more aggressive phenotype in breast carcinoma, through the activation of both Akt and Smad-2 signalling pathways.  相似文献   

7.
Insulin receptor substrate-1 (IRS-1) and IRS-2 are known to transduce and amplify signals emanating from the insulin receptor. Here we show that Grb2-associated binder 1 (Gab1), despite its structural similarity to IRS proteins, is a negative modulator of hepatic insulin action. Liver-specific Gab1 knockout (LGKO) mice showed enhanced hepatic insulin sensitivity with reduced glycemia and improved glucose tolerance. In LGKO liver, basal and insulin-stimulated tyrosine phosphorylation of IRS-1 and IRS-2 was elevated, accompanied by enhanced Akt/PKB activation. Conversely, Erk activation by insulin was suppressed in LGKO liver, leading to defective IRS-1 Ser612 phosphorylation. Thus, Gab1 acts to attenuate, through promotion of the Erk pathway, insulin-elicited signals flowing through IRS and Akt proteins, which represents a novel balancing mechanism for control of insulin signal strength in the liver.  相似文献   

8.
The role of endothelial ABCA1 expression in reverse cholesterol transport (RCT) was examined in transgenic mice, using the endothelial-specific Tie2 promoter. Human ABCA1 (hABCA1) was significantly expressed in endothelial cells (EC) of most tissues except the liver. Increased expression of ABCA1 was not observed in resident peritoneal macrophages. ApoA-I-mediated cholesterol efflux from aortic EC was 2.6-fold higher (P < 0.0001) for cells from transgenic versus control mice. On normal chow diet, Tie2 hABCA1 transgenic mice had a 25% (P < 0.0001) increase in HDL-cholesterol (HDL-C) and more than a 2-fold increase of eNOS mRNA in the aorta (P < 0.04). After 6 months on a high-fat, high-cholesterol (HFHC) diet, transgenic mice compared with controls had a 40% increase in plasma HDL-C (P < 0.003) and close to 40% decrease in aortic lesions (P < 0.02). Aortas from HFHC-fed transgenic mice also showed gene expression changes consistent with decreased inflammation and apoptosis. Beneficial effects of the ABCA1 transgene on HDL-C levels or on atherosclerosis were absent when the transgene was transferred onto ApoE or Abca1 knockout mice. In summary, expression of hABCA1 in EC appears to play a role in decreasing diet-induced atherosclerosis in mice and is associated with increased plasma HDL-C levels and beneficial gene expression changes in EC.  相似文献   

9.
Mice gene targeted for ATP-binding cassette transporter A1 (ABCA1; Abca1(-/-)) have been shown to have low-serum high-density lipoprotein and abnormal lung morphology. We examined alterations in the structure and function of lungs from -/- mice (DBA1/J). Electron microscopy of the diseased mouse lung revealed areas of focal disease confirming previous results (47). Lipid analysis of the lung tissue of -/- mice showed a 1.2- and 1.4-fold elevation in total phospholipid (PL) and saturated phosphatidylcholine, respectively, and a marked 50% enrichment in total cholesterol content predominantly due to a 17.5-fold increase in cholesteryl ester compared with wild type (WT). Lung surfactant in the -/- mice was characterized by alveolar proteinosis (161%), a slight increase in total PL (124%), and a marked increase in free cholesterol (155%) compared with WT. Alveolar macrophages were enriched in cholesterol (4.8-fold) due to elevations in free cholesterol (2.4-fold) and in cholesteryl ester (14.8-fold) compared with WT macrophages. More PL mass was cleared from the alveolar space of -/- mice lungs, measured using intratracheal installation of (3)H-PL liposomes. Compared with WT mice, the Abca1(-/-) mice demonstrated respiratory distress with rapid, shallow breathing. Thus the lungs of mice lacking ABCA1 protein demonstrated abnormal morphology and physiology, with alveolar proteinosis and cholesterol enrichment of tissue, surfactant, and macrophages. The results indicate that the activity of ABCA1 is important for the maintenance of normal lung lipid composition, structure, and function.  相似文献   

10.

Introduction

Three out of four people with diabetes will die of cardiovascular disease. However, the molecular mechanisms by which hyperglycemia promotes atherosclerosis, the major underlying cause of cardiovascular disease, are not clear.

Objectives

Three distinct models of hyperglycemia-associated accelerated atherosclerosis were used to identify commonly altered metabolites and pathways associated with the disease.

Methods

Normoglycemic apolipoprotein-E-deficient mice served as atherosclerotic control. Hyperglycemia was induced by multiple low-dose streptozotocin injections, or by introducing a point-mutation in one copy of insulin-2 gene. Glucosamine-supplemented mice, which experience accelerated atherosclerosis to a similar extent as hyperglycemia-induced models without alterations in glucose or insulin levels, were also included in the analysis. Untargeted plasma metabolomics were used to investigate hyperglycemia-associated accelerated atherosclerosis in three disease models. The effect of specific significantly altered metabolites on pro-atherogenic processes was investigated in cultured human vascular cells.

Results

Hyperglycemic and glucosamine-supplemented mice showed distinct metabolomic profiles compared to controls. Meta-analysis of three disease models revealed 62 similarly altered metabolite features (FDR-adjusted p?<?0.05). Identification of shared metabolites revealed alterations in glycerophospholipid and sphingolipid metabolism, and pro-atherogenic processes including inflammation and oxidative stress. Post-multivariate and pathway analyses indicated that the glycosphingolipid pathway is strongly associated with hyperglycemia-induced accelerated atherosclerosis in these atherogenic mouse models. Glycosphingolipids induced oxidative stress and inflammation in cultured human vascular cells.

Conclusion

Glycosphingolipids are strongly associated with hyperglycemia-induced accelerated atherosclerosis in three distinct models. They also promote pro-atherogenic processes in cultured human cells. These results suggest glycosphingolipid pathway may be a potential therapeutic target to block or slow atherogenesis in diabetic patients.
  相似文献   

11.
Starch, the most abundant storage carbohydrate in plants, has been a major feedstock for first‐generation biofuels. Growing fuel demands require, however, that the starch yields of energy crops be improved. Leaf starch is synthesised during the day and degraded at night to power nonphotosynthetic metabolism. Redox regulation has been associated with the coordination of the enzymes involved in starch metabolism, but neither the signals nor mechanisms that regulate this metabolism are entirely clear. In this work, the thioredoxin (Trx) f and m genes, which code for key enzymes in plastid redox regulation, were overexpressed from the plastid genome. Tobacco plants overexpressing Trx f, but not Trx m, showed an increase of up to 700% in leaf starch accumulation, accompanied by an increase in leaf sugars, specific leaf weight (SLW), and leaf biomass yield. To test the potential of these plants as a nonfood energy crop, tobacco leaves overexpressing Trx f were subjected to enzymatic hydrolysis, and around a 500% increase in the release of fermentable sugars was recorded. The results show that Trx f is a more effective regulator of photosynthetic carbon metabolism in planta than Trx m. The overexpression of Trx f might therefore provide a means of increasing the carbohydrate content of plants destined for use in biofuel production. It might also provide a means of improving the nutritional properties of staple food crops.  相似文献   

12.
It is shown in rabbits, that alimentary hypercholesterolemia proceeds with increasing lipid peroxidation in liver homogenate, blood serum and apo-B-containing lipoproteins. It is established in the model of liver perfusion in rabbits, that liver cells produce apo-B-containing level of lipid peroxidation. The lipid peroxidation increases in perfusate and in the fraction of lipoproteins (d less than 1,065 g/cm3) from this perfusate. Lipid peroxidation can interfere in the changing of physicochemical characteristics of lipoproteins at the stage of synthesis and secretion of lipoproteins by liver cells.  相似文献   

13.
Genes of the post-squalene ergosterol biosynthetic pathway in Saccharomyces cerevisiae have been overexpressed in a systematic approach with the aim to construct yeast strains that produce high amounts of sterols from a squalene-accumulating strain. This strain had previously been deregulated by overexpressing a truncated HMG-CoA reductase (tHMG1) in the main bottleneck of the early ergosterol pathway. The overexpression of the gene ERG1 (squalene epoxidase) induced a significant decrease of the direct substrate squalene, a high increase of lanosterol, and a small increase of later sterols. The overexpression of the ERG11 gene encoding the sterol-14alpha-demethylase resulted in a decrease of lanosterol and an increase of downstream sterols. When these two genes were simultaneously overexpressed, later sterols from zymosterol to ergosterol accumulated and the content of squalene was decreased about three-fold, indicating that these steps had limited the transformation of squalene into sterols. The total sterol content in this strain was three-fold higher than in a wild-type strain.  相似文献   

14.
An electron spin probe study was made of the effect of lipid peroxidation (LPO) on the structure of surface proteolipid layer of human serum low-density lipoproteins (LDL). The results obtained with a positively charged spin label and stearic acid spin probes with doxyl labels at positions 5, 12, and 16 revealed that LPO caused a decrease in phospholipid molecule mobility both in the region of polar heads and in the region of acyl chains till the depth of at least 1.7 mm from water-lipid interface. Under relatively high levels of oxidation (more than 6 mumol MDA/g LDL phospholipid) the polarity of lipid phase increased. The decrease in efficiency of tryptophan fluorescence quenching by nitroxide fragments incorporated in hydrophobic regions at the depth of approximately 2 nm from water-lipid interface indicated that lipid-protein interaction was disturbed as a result of oxidation of LDL lipids. In addition, the LPO-induced modification of apo-B, the main protein of LDL, was examined with maleimide spin label. LPO led to increase in mobility of strongly immobilized maleimide labels and in the number of weakly immobilized ones. Oxidized LDL revealed decreased ability to incorporate spin-labeled steroid (androstane) as compared to native ones. LPO-induced structural changes of LDL surface are supposed to be a reason of enhanced accumulation of cholesterol in human monocytes during their incubation with oxidized LDL. The cholesterol content in red cells was shown to be directly correlated to MDA content in apo-B containing lipoproteins but not in whole serum. Our findings suggest that free radical modification of serum lipoproteins but not solely an increased level of LPO products in blood is one important cause for cholesterol accumulation in cells and, apparently, for their transformation into foam cells during atherosclerosis.  相似文献   

15.
Inflammation in the vascular wall is important for development of atherosclerosis. We have shown previously that arachidonate 15-lipoxygenase type B (ALOX15B) is more highly expressed in human atherosclerotic lesions than in healthy arteries. This enzyme oxidizes fatty acids to substances that promote local inflammation and is expressed in lipid-loaded macrophages (foam cells) present in the atherosclerotic lesions. Here, we investigated the role of ALOX15B in foam cell formation in human primary macrophages and found that silencing of human ALOX15B decreased cellular lipid accumulation as well as proinflammatory cytokine secretion from macrophages. To investigate the role of ALOX15B in promoting the development of atherosclerosis in vivo, we used lentiviral shRNA silencing and bone marrow transplantation to knockdown mouse Alox15b gene expression in LDL-receptor-deficient (Ldlr(-/-)) mice. Knockdown of mouse Alox15b in vivo decreased plaque lipid content and markers of inflammation. In summary, we have shown that ALOX15B influences progression of atherosclerosis, indicating that this enzyme has an active proatherogenic role.  相似文献   

16.
17.
18.
19.
20.
Incubation of mouse thymocytes with 10M monensin for 1 hour induces morphological alterations characterized by the extensive dilatation and vacuolization of the Golgi complex. This effect is used to study the transport and utilization of labelled sugar nucleotides into intracellular vesicles by using thymocytes whose plasma membrane has been permeabilized by ammonium chloride treatment. It is demonstrated that monensin stimulates the incorporation of labelled sialyl, fucosyl, galactosyl, and N-acetylglucosaminyl residues. This enhanced incorporation is not due to a direct effect of monensin on glycosyltransferase activities themselves but is a consequence of a higher entry and accumulation of labelled sugar nucleotides in the dilated vesicles.Laboratoire de Chimie Biologique and Laboratoire Associé au CNRS no. 217.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号