首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The malaria parasite possesses plant-type ferredoxin (Fd) and ferredoxin-NADP(+) reductase (FNR) in a plastid-derived organelle called the apicoplast. This Fd/FNR redox system, which potentially provides reducing power for essential biosynthetic pathways in the apicoplast, has been proposed as a target for the development of specific new anti-malarial agents. We studied the molecular interaction of Fd and FNR of human malaria parasite (Plasmodium falciparum), which were produced as recombinant proteins in Escherichia coli. NMR chemical shift perturbation analysis mapped the location of the possible FNR interaction sites on the surface of P. falciparum Fd. Site-specific mutation of acidic Fd residues in these regions and the resulting analyses of electron transfer activity and affinity chromatography of those mutants revealed that two acidic regions (a region including Asp26, Glu29 and Glu34, and the other including Asp65 and Glu66) dominantly contribute to the electrostatic interaction with P. falciparum FNR. The combination of Asp26/Glu29/Glu34 conferred a larger contribution than that of Asp65/Glu66, and among Asp26, Glu29 and Glu34, Glu29 was shown to be the most important residue for the interaction with P. falciparum FNR. These findings provide the basis for understanding molecular recognition between Fd and FNR of the malaria parasite.  相似文献   

2.
The human malaria parasite (Plasmodium falciparum) possesses a plastid-derived organelle called the apicoplast, which is believed to employ metabolisms crucial for the parasite's survival. We cloned and studied the biochemical properties of plant-type ferredoxin (Fd) and Fd-NADP+ reductase (FNR), a redox system that potentially supplies reducing power to Fd-dependent metabolic pathways in malaria parasite apicoplasts. The recombinant P. falciparum Fd and FNR proteins were produced by synthetic genes with altered codon usages preferred in Escherichia coli. The redox potential of the Fd was shown to be considerably more positive than those of leaf-type and root-type Fds from plants, which is favourable for a presumed direction of electron flow from catabolically generated NADPH to Fd in the apicoplast. The backbone structure of P. falciparum Fd, as solved by X-ray crystallography, closely resembles those of Fds from plants, and the surface-charge distribution shows several acidic regions in common with plant Fds and some basic regions unique to this Fd. P. falciparum FNR was able to transfer electrons selectively to P. falciparum Fd in a reconstituted system of NADPH-dependent cytochrome c reduction. These results indicate that an NADPH-FNR-Fd cascade is operative in the apicoplast of human malaria parasites.  相似文献   

3.
Ferredoxin (Fd), which plays a pivotal role in photosynthesis as an electron carrier, forms a transient complex with various Fd-dependent enzymes, such as nitrite reductase (NiR), to achieve efficient intermolecular electron transfer. We studied the protein-protein interaction of Fd and NiR by NMR spectroscopy and determined three acidic regions of Fd to be major sites for the interaction with NiR, indicating that the complex is stabilized through electrostatic interaction. During this study, we found Fds from higher plant and cyanobacterium, in spite of their high structural similarities including the above acidic regions, differ remarkably in the interaction with cyanobacterial NiR. In activity assay of NiR, K(m) value for maize Fd (74.6 μM) was 9.6 times larger than that for Leptolyngbya boryana Fd (7.8 μM). The two Fds also showed a similar difference in binding assay to NiR-immobilized resin. Comparative site-specific mutagenesis of two Fds revealed that their discriminative ability for the interaction with NiR is attributed mainly to non-charged residues in the peripheral region of [2Fe-2S] cluster. These non-charged residues are conserved separately between Fds of plant and cyanobacterial origins. Our data highlight that intermolecular force(s) other than electrostatic attraction is(are) also crucial for the molecular interaction between Fd and partner enzyme.  相似文献   

4.
Plant ferredoxin serves as the physiological electron donor for sulfite reductase, which catalyzes the reduction of sulfite to sulfide. Ferredoxin and sulfite reductase form an electrostatically stabilized 1:1 complex for the intermolecular electron transfer. The protein-protein interaction between these proteins from maize leaves was analyzed by nuclear magnetic resonance spectroscopy. Chemical shift perturbation and cross-saturation experiments successfully mapped the location of two major interaction sites of ferredoxin: region 1 including Glu-29, Glu-30, and Asp-34 and region 2 including Glu-92, Glu-93, and Glu-94. The importance of these two acidic patches for interaction with sulfite reductase was confirmed by site-specific mutation of acidic ferredoxin residues in regions 1 and 2, separately and in combination, by which the ability of mutant ferredoxins to transfer electrons and bind to sulfite reductase was additively lowered. Taken together, this study gives a clear illustration of the molecular interaction between ferredoxin and sulfite reductase. We also present data showing that this interaction surface of ferredoxin significantly differs from that when ferredoxin-NADP(+) reductase is the interaction partner.  相似文献   

5.
The three-dimensional structures of K72E, K75R, K75S, K75Q, and K75E Anabaena Ferredoxin-NADP+ reductase (FNR) mutants have been solved, and particular structural details of these mutants have been used to assess the role played by residues 72 and 75 in optimal complex formation and electron transfer (ET) between FNR and its protein redox partners Ferredoxin (Fd) and Flavodoxin (Fld). Additionally, because there is no structural information available on the interaction between FNR and Fld, a model for the FNR:Fld complex has also been produced based on the previously reported crystal structures and on that of the rat Cytochrome P450 reductase (CPR), onto which FNR and Fld have been structurally aligned, and those reported for the Anabaena and maize FNR:Fd complexes. The model suggests putative electrostatic and hydrophobic interactions between residues on the FNR and Fld surfaces at the complex interface and provides an adequate orientation and distance between the FAD and FMN redox centers for efficient ET without the presence of any other molecule as electron carrier. Thus, the models now available for the FNR:Fd and FNR:Fld interactions and the structures presented here for the mutants at K72 and K75 in Anabaena FNR have been evaluated in light of previous biochemical data. These structures confirm the key participation of residue K75 and K72 in complex formation with both Fd and Fld. The drastic effect in FNR activity produced by replacement of K75 by Glu in the K75E FNR variant is explained not only by the observed changes in the charge distribution on the surface of the K75E FNR mutant, but also by the formation of a salt bridge interaction between E75 and K72 that simultaneously "neutralizes" two essential positive charged side chains for Fld/Fd recognition.  相似文献   

6.
In the ferredoxin-NADP(+) reductase (FNR)/ferredoxin (Fd) system, an aromatic amino acid residue on the surface of Anabaena Fd, Phe-65, has been shown to be essential for the electron transfer (ET) reaction. We have investigated further the role of hydrophobic interactions in complex stabilization and ET between these proteins by replacing three hydrophobic residues, Leu-76, Leu-78, and Val-136, situated on the FNR surface in the vicinity of its FAD cofactor. Whereas neither the ability of FNR to accept electrons from NADPH nor its structure appears to be affected by the introduced mutations, different behaviors with Fd are observed. Thus, the ET interaction with Fd is almost completely lost upon introduction of negatively charged side chains. In contrast, only subtle changes are observed upon conservative replacement. Introduction of Ser residues produces relatively sizable alterations of the FAD redox potential, which can explain the modified behavior of these mutants. The introduction of bulky aromatic side chains appears to produce rearrangements of the side chains at the FNR/Fd interaction surface. Thus, subtle changes in the hydrophobic patch influence the rates of ET to and from Fd by altering the binding constants and the FAD redox potentials, indicating that these residues are especially important in the binding and orientation of Fd for efficient ET. These results are consistent with the structure reported for the Anabaena FNR.Fd complex.  相似文献   

7.
The plant-type ferredoxin/ferredoxin-NADP(+) reductase (Fd/FNR) redox system found in parasites of the phylum Apicomplexa has been proposed as a target for novel drugs used against life-threatening diseases such as malaria and toxoplasmosis. Like many proteins from these protists, apicomplexan FNRs are characterized by the presence of unique peptide insertions of variable length and yet unknown function. Since three-dimensional data are not available for any of the parasite FNRs, we used limited proteolysis to carry out an extensive study of the conformation of Toxoplasma gondii FNR. This led to identification of 11 peptide bonds susceptible to the action of four different proteases. Cleavage sites are clustered in four regions of the enzyme, which include two of its three species-specific insertions. Such regions are thus predicted to form flexible surface loops. The protein substrate Fd protected FNR against cleavage both at its N-terminal peptide and at its largest sequence insertion (28 residues). Deletion by protein engineering of the species-specific subdomain containing the latter insertion resulted in an enzyme form that, although catalytically active, displayed a 10-fold decreased affinity for Fd. In contrast, removal of the first 15 residues of the enzyme unexpectedly enhanced its interaction with Fd. Thus, two flexible polypeptide regions of T. gondii FNR are involved in Fd interaction but have opposite roles in modulating the binding affinity for the protein ligand. In this respect, T. gondii FNR differs from plant FNRs, where the N-terminal peptide contributes to the stabilization of their complex with Fd.  相似文献   

8.
Ferredoxin (Fd) and Fd-NADP(+) reductase (FNR) are redox partners responsible for the conversion between NADP(+) and NADPH in the plastids of photosynthetic organisms. Introduction of specific disulfide bonds between Fd and FNR by engineering cysteines into the two proteins resulted in 13 different Fd-FNR cross-linked complexes displaying a broad range of activity to catalyze the NADPH-dependent cytochrome c reduction. This variability in activity was thought to be mainly due to different levels of intramolecular electron transfer activity between the FNR and Fd domains. Stopped-flow analysis revealed such differences in the rate of electron transfer from the FNR to Fd domains in some of the cross-linked complexes. A group of the cross-linked complexes with high cytochrome c reduction activity comparable to dissociable wild-type Fd/FNR was shown to assume a similar Fd-FNR interaction mode as in the native Fd:FNR complex by analyses of NMR chemical shift perturbation and absorption spectroscopy. However, the intermolecular electron transfer of these cross-linked complexes with two Fd-binding proteins, nitrite reductase and photosystem I, was largely inhibited, most probably due to steric hindrance by the FNR moiety linked near the redox center of the Fd domain. In contrast, another group of the cross-linked complexes with low cytochrome c reduction activity tends to mediate higher intermolecular electron transfer activity. Therefore, reciprocal relationship of intramolecular and intermolecular electron transfer abilities was conferred by the linkage of Fd and FNR, which may explain the physiological significance of the separate forms of Fd and FNR in chloroplasts.  相似文献   

9.
The enzyme ferredoxin-NADP(+) reductase (FNR) forms a 1 : 1 complex with ferredoxin (Fd) or flavodoxin (Fld) that is stabilised by both electrostatic and hydrophobic interactions. The electrostatic interactions occur between acidic residues of the electron transfer (ET) protein and basic residues on the FNR surface. In the present study, several charge-reversal mutants of FNR have been prepared at the proposed site of interaction of the ET protein: R16E, K72E, K75E, K138E, R264E, K290E and K294E. All of these mutants have been assayed for reactivity with Fd and Fld using steady-state and stopped-flow kinetics. Their abilities for complex formation with the ET proteins have also been tested. The data presented here indicate that the mutated residues situated within the FNR FAD-binding domain are more important for achieving maximal ET rates, either with Fd or Fld, than those situated within the NADP(+)-binding domain, and that both ET proteins occupy the same region for the interaction with the reductase. In addition, each individual residue does not appear to participate to the same extent in the different processes with Fd and Fld.  相似文献   

10.
Sulfite reductase (SiR) catalyzes the reduction of sulfite to sulfide in chloroplasts and root plastids using ferredoxin (Fd) as an electron donor. Using purified maize (Zea mays L.) SiR and isoproteins of Fd and Fd-NADP(+) reductase (FNR), we reconstituted illuminated thylakoid membrane- and NADPH-dependent sulfite reduction systems. Fd I and L-FNR were distributed in leaves and Fd III and R-FNR in roots. The stromal concentrations of SiR and Fd I were estimated at 1.2 and 37 microM, respectively. The molar ratio of Fd III to SiR in root plastids was approximately 3:1. Photoreduced Fd I and Fd III showed a comparable ability to donate electrons to SiR. In contrast, when being reduced with NADPH via FNRs, Fd III showed a several-fold higher activity than Fd I. Fd III and R-FNR showed the highest rate of sulfite reduction among all combinations tested. NADP(+) decreased the rate of sulfite reduction in a dose-dependent manner. These results demonstrate that the participation of Fd III and high NADPH/NADP(+) ratio are crucial for non-photosynthetic sulfite reduction. In accordance with this view, a cysteine-auxotrophic Escherichia coli mutant defective for NADPH-dependent SiR was rescued by co-expression of maize SiR with Fd III but not with Fd I.  相似文献   

11.
Hydrophobic interactions play an active role in effective complex formation between ferredoxin-NADP(+) reductase (FNR) and ferredoxin (Fd) from Anabaena, where an aromatic amino acid residue on the Fd surface (F65) and three hydrophobic residues (L76, L78, and V136) on the reductase surface have been shown to be essential for the efficient electron transfer (ET) reaction between Fd and FNR (Martínez-Júlvez et al. (2001) J. Biol. Chem. 276, 27498-27510). Since in this system flavodoxin (Fld) can efficiently replace Fd in the overall ET process, we have further investigated if such hydrophobic interactions are also critical in complex stabilization and ET in the FNR/Fld association. Different ET behaviors with Fld are observed for some of the mutations made at L76, L78, and V136 of Anabaena FNR. Thus, the ET interaction with Fld is almost completely lost upon introduction of negatively charged side chains at these positions, while more conservative changes in the hydrophobic patch can influence the rates of ET to and from Fld by altering the binding constants and the midpoint redox potentials of the flavin group. Therefore, our results confirm that nonpolar residues in the region close to the FAD group in FNR participate in the establishment of interactions with Fld, which serve to orient the two flavin groups in a manner such that ET is favored. In an attempt to look for the counterpart region of the Fld surface, the effect produced by the replacement of the only two nonpolar residues on the Fld surface, I59 and I92, by a Lys has also been analyzed. The results obtained suggest that these two hydrophobic residues are not critical in the interaction and ET processes with FNR. The reactivity of these I92 and I59 Fld mutants toward the membrane-anchored photosystem I (PSI) complex was also analyzed by laser flash absorption spectroscopy. From these data, significant effects are evident, especially for the I92 position of Fld, both in the association constant for complex formation and in the electron-transfer rate constant in the PSI/Fld system.  相似文献   

12.
The small, soluble, (2Fe-2S)-containing protein ferredoxin (Fd) mediates electron transfer from the chloroplast photosystem I to ferredoxin: NADP+ oxidoreductase (FNR), a flavoenzyme located on the stromal side of the thylakoid membrane. Ferredoxin and FNR form a 1:1 complex, which is stabilized by electrostatic interactions between acidic residues of Fd and basic residues of FNR. We have used differential chemical modification of Fd to locate aspartic and glutamic acid residues at the intermolecular interface of the Fd:FNR complex (both proteins from spinach). Carboxyl groups of free and FNR-bound Fd were amidated with carbodiimide/2-aminoethane sulfonic acid (taurine). The differential reactivity of carboxyl groups was assessed by double isotope labeling. Residues protected in the Fd:FNR complex were D-26, E-29, E-30, D-34, D-65, and D-66. The protected residues belong to two domains of negative electrostatic surface potential on either side of the iron-sulfur cluster. The negative end of the molecular dipole moment vector of Fd (377 Debye) is close to the iron-sulfur cluster, in the center of the area demarcated by the protected carboxyl groups. The molecular dipole moment and the asymmetric surface potential may help to orient Fd in the reaction with FNR. In support, we find complementary domains of positive electrostatic potential on either side of the FAD redox center of FNR. The results allow a binding model for the Fd:FNR complex to be constructed.  相似文献   

13.
During the evolution of higher-plant root and leaf-type-specific Fd : FNR complexes from an original cyanobacterial type progenitor, rearrangement of molecular interaction has altered the relative orientation of prosthetic groups and there have been changes in complex induced conformational change. Selection has presumably worked on mutation of residues responsible for interaction between the two proteins, favoring optimized electron flow in a specific direction, and efficient dissociation following specific oxidation of leaf Fd and reduction of root Fd. Major changes appear to be: loss in both leaf and root complexes of a cyanobacterial mechanism that ensures Fd dissociation from the complex following change in Fd redox state, development of a structural rearrangement of Fd on binding to leaf FNR that results in a negative shift in Fd redox potential favorable to photosynthetic electron flow, creation of a vacant space in the root Fd:FNR complex that may allow access to the redox centers of other enzymes to ensure efficient channeling of heterotrophic reductant into bioassimilation. Further structural analysis is essential to establish how root type FNR distinguishes between Fd isoforms, and discover how residues not directly involved in intermolecular interactions may affect complex formation.  相似文献   

14.
In higher plants, [2Fe-2S] ferredoxin (Fd) proteins are the unique electron acceptors from photosystem I (PSI). Fds are soluble, and distribute electrons to many enzymes, including Fd:NADP(H) reductase (FNR), for the photoreduction of NADP(+). In addition to well studied [2Fe-2S] Fd proteins, higher plants also possess genes for significantly different, as yet uncharacterized Fd proteins, with extended C termini (FdCs). Whether these FdC proteins function as photosynthetic electron transfer proteins is not known. We examined whether these proteins play a role as alternative electron acceptors at PSI, using quantitative RT-PCR to follow how their expression changes in response to acceptor limitation at PSI, in mutant Arabidopsis plants lacking 90-95% of photosynthetic [2Fe-2S] Fd. Expression of the gene encoding one FdC protein, FdC1, was identified as being strongly up-regulated. We confirmed that this protein was chloroplast localized and increased in abundance on PSI acceptor limitation. We purified the recombinant FdC1 protein, which exhibited a UV-visible spectrum consistent with a [2Fe-2S] cluster, confirmed by EPR analysis. Measurements of electron transfer show that FdC1 is capable of accepting electrons from PSI, but cannot support photoreduction of NADP(+). Whereas FdC1 was capable of electron transfer with FNR, redox potentiometry showed that it had a more positive redox potential than photosynthetic Fds by around 220 mV. These results indicate that FdC1 electron donation to FNR is prevented because it is thermodynamically unfavorable. Based on our data, we speculate that FdC1 has a specific function in conditions of acceptor limitation at PSI, and channels electrons away from NADP(+) photoreduction.  相似文献   

15.
We have determined the crystal structure, at 1.2-A resolution, of Equisetum arvense ferredoxin isoform II (FdII), which lacks residues equivalent to Arg(39) and Glu(28) highly conserved among other ferredoxins (Fds). In other Fds these residues form an intramolecular salt bridge crucial for stabilization of the [2Fe-2S] cluster, which is disrupted upon complex formation with Fd-NADP(+) oxidoreductase (FNR) to form two intermolecular salt bridges. The overall structure of FdII resembles the known backbone structures of E. arvense isoform I (FdI) and other plant-type Fds. Dramatically, in the FdII structure a unique, alternative salt bridge is formed between Arg(22) and Glu(58). This results in a different relative orientation of the alpha-helix formed by Leu(23)-Glu(29) and eliminates the possibility of forming three of the five intermolecular salt bridges identified on formation of a complex between maize FdI and maize FNR. Mutation of FdII, informed by structural differences with FdI, showed that the alternative salt bridge and the absence of an otherwise conserved Tyr residue are important for the alternative stabilization of the FdII [2Fe-2S] cluster. We also investigated FdI and FdII electron transfer to FNR on chloroplast thylakoid membranes. The K(m) and V(max) values of FdII are similar to those of FdI, contrary to previous measurements of the reverse reaction, from FNR to Fd. The affinity between reduced FdI and oxidized FNR is much greater than that between oxidized FdI and reduced FNR, whereas this is not the case with FdII. The pH dependence of electron transfer by FdI, FdII, and an FdII mutant with FdI features was measured and further indicated that the binding mode to FNR differs between FdI and FdII. Based on this evidence, we hypothesize that binding modes with other Fd-dependent reductases may also vary between FdI and FdII. The structural differences between FdI and FdII therefore result in functional differences that may influence partitioning of electrons into different redox metabolic pathways.  相似文献   

16.
In higher plants ferredoxin (Fd):NADP(+) oxidoreductase (FNR) and Fd are each distributed in photosynthetic and non-photosynthetic organs as distinct isoproteins. We have cloned cDNAs for leaf FNR (L-FNR I and L-FNR II) and root FNR (R-FNR) from maize (Zea mays L.), and produced recombinant L-FNR I and R-FNR to study their enzymatic functions through kinetic and Fd-binding analyses. The K(m) value obtained by assay for a diaphorase activity indicated that R-FNR had a 10-fold higher affinity for NADPH than L-FNR I. When we assayed for NADPH-cytochrome c reductase activity using maize photosynthetic Fd (Fd I) and non-photosynthetic Fd (Fd III), the R-FNR showed a marked difference in affinity between these two Fd isoproteins; the K(m) for Fd III was 3.0 microM and that for Fd I was 29 microM. Consistent with this, the dissociation constant for the R-FNR:Fd III complex was 10-fold smaller than that of the R-FNR:Fd I complex. This differential binding capacity was confirmed by an affinity chromatography of R-FNR on Fd-sepharose with stronger binding to Fd III. L-FNR I showed no such differential interaction with Fd I and Fd III. These data demonstrated that R-FNR has the ability to discriminate between these two types of Fds. We propose that the stronger interaction of R-FNR with Fd III is crucial for an efficient electron flux of NADPH-FNR-Fd cascade, thus supporting Fd-dependent metabolism in non-photosynthetic organs.  相似文献   

17.
The role of the negative charge of the E139 side-chain of Anabaena Ferredoxin-NADP+ reductase (FNR) in steering appropriate docking with its substrates ferredoxin, flavodoxin and NADP+/H, that leads to efficient electron transfer (ET) is analysed by characterization of several E139 FNR mutants. Replacement of E139 affects the interaction with the different FNR substrates in very different ways. Thus, while E139 does not appear to be involved in the processes of binding and ET between FNR and NADP+/H, the nature and the conformation of the residue at position 139 of Anabaena FNR modulates the precise enzyme interaction with the protein carriers ferredoxin (Fd) and flavodoxin (Fld). Introduction of the shorter aspartic acid side-chain at position 139 produces an enzyme that interacts more weakly with both ET proteins. Moreover, the removal of the charge, as in the E139Q mutant, or the charge-reversal mutation, as in E139K FNR, apparently enhances additional interaction modes of the enzyme with Fd, and reduces the possible orientations with Fld to more productive and stronger ones. Hence, removal of the negative charge at position 139 of Anabaena FNR produces a deleterious effect in its ET reactions with Fd whereas it appears to enhance the ET processes with Fld. Significantly, a large structural variation is observed for the E139 side-chain conformer in different FNR structures, including the E139K mutant. In this case, a positive potential region replaces a negative one in the wild-type enzyme. Our observations further confirm the contribution of both attractive and repulsive interactions in achieving the optimal orientation for efficient ET between FNR and its protein carriers.  相似文献   

18.
Ferredoxin (Fd) interacts with ferredoxin-NADP(+) reductase (FNR) to transfer two electrons to the latter, one by one, which will finally be used to reduce NADP(+) to NADPH. The formation of a transient complex between Fd and FNR is required for the electron transfer (ET), and extensive mutational and crystallographic studies have been reported to characterize such protein-protein interaction. However, some aspects of the association mechanism still remain unclear. Moreover, in spite of their structural differences, flavodoxin (Fld) can replace Fd in its function and interact with FNR to transfer electrons with only slightly lower efficiency. Although crystallographic structures for the FNR:Fd association have been reported, experimental structural data for the FNR:Fld interaction are highly elusive. We have modeled here the interactions between FNR and both of its protein partners, Fd and Fld, using surface energy analysis, computational rigid-body docking simulations, and interface side-chain refinement. The results, consistent with previous experimental data, suggest the existence of alternative binding modes in these ET proteins.  相似文献   

19.
A cross-linked complex between bovine NADPH-adrenodoxin reductase (AR) and adrenodoxin (AD) was prepared with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide and purified, as described previously [Hara, T. & Kimura, T. (1989) J. Biochem. 105, 594-600]. The covalent complex was S-pyridylethylated and digested with lysylendopeptidase, and the resulting peptides were separated by reversed-phase HPLC to identify the cross-linked peptide. Comparison of the HPLC chromatograms of the peptides showed that (i) two tandem peptides (K-4 and K-5) from AD and a peptide (K-1) from AR were missing in the chromatogram of the peptides of the covalent complex and (ii) a single new peak was observed in the chromatogram of the peptides from the covalent complex. Amino acid composition and sequence analyses showed that the newly observed peptide was a covalently cross-linked peptide formed between a peptide K-4-K-5 (Ile-25-Lys-98) derived from AD and a peptide K-1 (Ser-1-Lys-27) derived from AR, in which an amide bond had been formed between the epsilon-amino group of Lys-66 in AD and the gamma-carboxyl group of Glu-4 in AR. These results indicate that the binding site of AR with AD is localized in the amino-terminal part of AR and that of AD with AR is localized around Lys-66 of AD. The six clustered basic amino acid residues (His-24, Lys-27, His-28, His-29, Arg-31, and His-33) present in the amino-terminal portion of AR and the eight clustered acidic amino acid residues (Glu-65, Glu-68, Asp-72, Glu-73, Glu-74, Asp-76, Asp-79, and Asp-86) present in the middle part of AD may play an important role in the complex formation.  相似文献   

20.
Ferredoxin (Fd) and ferredoxin:NADP(+) reductase (FNR) from Anabaena function in photosynthetic electron transfer (et). The et interaction between the FNR charge-reversal mutant E139K and Fd at 12 mM ionic strength (mu) is extremely impaired relative to the reaction with wt FNR, and the dependency of k(obs) on E139K concentration shows strong upward curvature at protein concentrations > or = 10 microM. However, at values of mu > or = 200 mM, reaction rates approach those of wild-type FNR, and normal saturation kinetics are observed. For the E139Q mutant, which is also significantly impaired in its et interaction with Fd at low FNR concentrations and low mu values, the dependency of k(obs) on E139Q concentration shows a smaller degree of upward curvature at mu = 12 and 100 mM and shows saturation kinetics at higher values of mu. wt FNR and the E139D mutant both show a slight amount of upward curvature at FNR concentrations >30 microM at mu = 12 mM but show the expected saturation kinetics at higher values of mu. These results are explained by a mechanism in which the mutual orientation of the proteins in the complex formed at low ionic strength with the E139K mutant is so far from optimal that it is almost unreactive. At increased E139K concentrations, the added mutant FNR reacts via a collisional interaction with the reduced Fd present in the unreactive complex. The et reactivity of the low ionic strength complexes depends on the particular amino acid substitution, which via electrostatic interactions alters the specific geometry of the interface between the two proteins. The presence of a negative charge at position 139 of FNR allows the most optimal orientations for et at ionic strengths below 200 mM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号