首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The passage of substances across the blood-brain barrier is regulated by cerebral capillaries which possess certain distinctly different morphological and enzymatic properties compared to capillaries of other organs. Investigations of the functional characteristics of brain capillaries have been facilitated by the use of cultured brain endothelial cells, but in most studies a number of characteristics of the in vivo system are lost. To provide an in vitro system for studies of brain capillary functions, we developed a method of isolating and producing a large number of bovine brain capillary endothelial cells. These cells, absolutely free of pericyte contamination, are subcultured, at the split ratio of 1:20 (20-fold increase of the cultured surface), with no apparent changes in cell morphology up to the fiftieth generation (10 passages). Retention of endothelial-specific characteristics (factor VIII-related antigen, angiotensin-converting enzyme, and nonthrombogenic surface) is shown for brain capillary-derived endothelial cells up to passage 10, even after frozen storage at passage 3. Furthermore, we showed that bovine brain capillary endothelial cells retain, up to the fiftieth generation, some of the characteristics of the blood-brain barrier: occurrence of tight junctions, paucity of pinocytotic vesicles, and monoamine oxidase activity.  相似文献   

2.
The immortalized rat brain microvessel endothelial cell line RBE4 was used to investigate the in vitro regulation of two blood-brain barrier specific enzymes, gamma-glutamyl transpeptidase (GTP) and alkaline phosphatase (ALP). The effects of bFGF, astroglial factors, and retinoic acid (a cell differentiation agent) on GTP and ALP activities were separately or simultaneously studied in order to define optimal culture conditions for induction of these two specific enzymes of the blood-brain barrier. In the present study, a phenotypically distinct subpopulation of endothelial cells has been shown to develop from confluent cobblestone monolayers of RBE4 immortalized cerebral endothelial cells. These distinct cells were present within multicellular aggregates and specifically exhibited GTP and ALP activities. Addition of bFGF, astroglial factors, or retinoic acid induced the formation of these three-dimensional structures and in consequence an increase in GTP and ALP activities. For retinoic acid and astroglial factors, this increase could also be explained by the stimulation of either GTP or ALP expression in the phenotypically distinct positive cells associated with aggregates. Simultaneous treatment with retinoic acid and astroglial factors had a synergistic effect on GTP and ALP expression and thus may allow these distinct cells to evolve toward a more differentiated state. Since such results were also obtained with physiological concentrations of retinoic acid, we suggest that addition of this agent might contribute to greater differentiation of cells in in vitro blood-brain barrier models where endothelial cells are cocultured with astrocytes. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Ramsohoye  P.V.  Fritz  I.B. 《Neurochemical research》1998,23(12):1545-1551
Factors secreted by C6 glioma cells which induce electrical resistances across endothelial monolayers in an in vitro blood-brain barrier model have been partially characterised for the first time. These transendothelial electrical resistances (TEERs) were only evident when cell-free conditioned medium derived from C6 glioma cells was applied to the basolateral surfaces of confluent ECV304 or ECV304-9 cells which are both human umbilical vein endothelial cell lines (HUVEC). Electrical resistance values as high as 600 ohm. sq cm were obtained with this blood-brain barrier model and ultrafiltration techniques suggest that any factor(s) in the conditioned medium responsible for these TEERs have molecular masses of less than 1000 Da. Enzymic proteolysis and heat treatment carried out on the conditioned medium failed to inhibit its effect on the HUVEC monolayers suggesting that these C6 cell-secreted factors are unlikely to be proteins.  相似文献   

4.
In the present study, we investigated the changes in blood-brain barrier (BBB) permeability following brain endothelial cell exposure to different xenobiotics able to promote free radical generation during their metabolism. Our in vitro BBB model consisted of confluent monolayers of immortalized rat brain capillary endothelial cells (RBE4) grown on collagen-coated filters in the presence of C6 glioma cells grown in the lower compartment. We have recently shown that a range of xenobiotics, including menadione, nitrofurazone, and methylviologen (paraquat) may undergo monoelectronic redox cycling in isolated brain capillaries, giving rise to reactive oxygen species. In this study, addition of 100 microM menadione to the culture medium for 30 min significantly increased the permeability of endothelial cell monolayers to radiolabeled sucrose. The effect on endothelial permeability induced by menadione was dose-dependent and reversible. These permeability changes preceded the onset of cell death, as assessed by the Trypan blue exclusion method. Pre-incubation with superoxide dismutase and catalase blocked changes in sucrose permeability to control levels in a dose-dependent manner, suggesting the involvement of reactive oxygen species in menadione-induced BBB opening.  相似文献   

5.
Summary Cocultures of human umbilical vein endothelial cells (ECV304) and rat glioma cells (C6) from two commercial sources, American Type Culture Collection and European Collection of Animal Cell Cultures, were evaluated as an in vitro model for the blood-brain barrier. Monolayers of endothelial cells grown in the presence or absence of glial cells were examined for transendothelial electrical resistance, sucrose permeability, morphology, multidrug resistance-associated protein expression, and P-glycoprotein expression and function. Coculture of glial cells with endothelial cells increased electrical resistance and decreased sucrose permeability across European endothelial cell monolayers, but had no effect on American endothelial cells. Coculture of European glial cells with endothelial cells caused cell flattening and decreased cell stacking with both European and American endothelial cells. No P-glycoprotein or multidrug resistance-associated protein was immunodetected in endothelial cells grown in glial cell-conditioned medium. Functional P-glycoprotein was demonstrated in American endothelial cells selected in vinblastine-containing medium over eight passages, but these cells did not form a tight endothelium. In conclusion, while European glial cells confer blood-brain barrier-like morphology and barrier integrity to European endothelial cells in coculture, the European endothelial-glial cell coculture model does not express P-glycoprotein, normally found at the blood-brain barrier. Further, the response of endothelial cells to glial factors was dependent on cell source, implying heterogeneity among cell populations. On the basis of these observations, the umbilical vein endothelial cell-glial cell coculture model does not appear to be a viable model for predicting blood-brain barrier penetration of drug molecules.  相似文献   

6.
The blood-brain barrier, localized in the endothelium of the cerebral capillaries, is characterized by the existence of tight junctions, a low mitochondrial density, a low number of vesicles and a high activity of certain enzymes like alkaline phosphatase and gamma-glutamyl transpeptidase. Astroglial cells secrete a product that induces brain microvessel endothelial cells to differentiate into endothelial cells with blood-brain barrier properties. If rat astrocytes were grown together with human umbilical cord vein endothelial cells in a co-culture system in which there is no cellular contact between both cell types, alkaline phosphatase activity was induced in the endothelial cells after three days of co-culturing. If the endothelial cells were cultured in astrocyte conditioned medium, alkaline phosphatase activity was also induced, and preliminary results showed that formation of tight junctions occurred after five days. These observations support the hypothesis that astrocytes induce the differentiation of non-blood-brain barrier endothelial cells into endothelial cells with blood-brain barrier properties, in this study based on alkaline phosphatase-activity induction and induction of tight junction formation. These inductive processes are produced by a soluble factor released by the astrocytes.  相似文献   

7.
Endothelial cells line the vasculature and, after mechanical denudation during invasive procedures or cellular loss from natural causes, migrate to reestablish a confluent monolayer. We find confluent monolayers of human umbilical vein endothelial cells were quiescent and expressed low levels of cyclooxygenase-2, but expressed cyclooxygenase-2 at levels comparable with cytokine-stimulated cells when present in a subconfluent culture. Mechanically wounding endothelial cell monolayers stimulated rapid cyclooxygenase-2 expression that increased with the level of wounding. Cyclooxygenase-2 re-expression occurred throughout the culture, suggesting signaling from cells proximal to the wound to distal cells. Media from wounded monolayers stimulated cyclooxygenase-2 expression in confluent monolayers, which correlated with the level of wounding of the donor monolayer. Wounded monolayers and cells in subconfluent cultures secreted enhanced levels of prostaglandin (PG) E(2) that depended on cyclooxygenase-2 activity, and PGE(2) stimulated cyclooxygenase-2 expression in confluent endothelial cell monolayers. Cells from subconfluent monolayers migrated through filters more readily than those from confluent monolayers, and the cyclooxygenase-2-selective inhibitor NS-398 suppressed migration. Adding PGE(2) to NS-398-treated cells augmented migration. Endothelial cells also migrated into mechanically denuded areas of confluent monolayers, and this too was suppressed by NS-398. We conclude that endothelial cells not in contact with neighboring cells express cyclooxygenase-2 that results in enhanced release of PGE(2), and that this autocrine and paracrine loop enhances endothelial cell migration to cover denuded areas of the endothelium.  相似文献   

8.
Malignant melanoma represents the third common cause of brain metastasis, having the highest propensity to metastasize to the brain of all primary neoplasms in adults. Since the central nervous system lacks a lymphatic system, the only possibility for melanoma cells to reach the brain is via the blood stream and the blood-brain barrier. Despite the great clinical importance, mechanisms of transmigration of melanoma cells through the blood-brain barrier are incompletely understood. In order to investigate this question we have used an in vitro experimental setup based on the culture of cerebral endothelial cells (CECs) and the A2058 and B16/F10 melanoma cell lines, respectively. Melanoma cells were able to adhere to confluent brain endothelial cells, a process followed by elimination of protrusions and transmigration from the luminal to the basolateral side of the endothelial monolayers. The transmigration process of certain cells was accelerated when they were able to use the routes preformed by previously transmigrated melanoma cells. After migrating through the endothelial monolayer several melanoma cells continued their movement beneath the endothelial cell layer. Melanoma cells coming in contact with brain endothelial cells disrupted the tight and adherens junctions of CECs and used (at least partially) the paracellular transmigration pathway. During this process melanoma cells produced and released large amounts of proteolytic enzymes, mainly gelatinolytic serine proteases, including seprase. The serine protease inhibitor Pefabloc® was able to decrease to 44–55% the number of melanoma cells migrating through CECs. Our results suggest that release of serine proteases by melanoma cells and disintegration of the interendothelial junctional complex are main steps in the formation of brain metastases in malignant melanoma.  相似文献   

9.
It has been shown both in vivo and in culture that astrocytes communicate with brain microvessel endothelial cells (BMECs) to induce many of the blood-brain barrier characteristics attributed to these unique cells. However, the results using cultured cells are conflicting as to whether this communication is dependent upon cell-cell contact. In this study we used primary cultures of bovine BMECs grown as monolayers on polycarbonate filters to study the formation of the barrier in vitro and examine its modulation by rat C6 glioma cells. Effects were examined by treating postconfluent BMEC monolayers with medium conditioned continually by C6 cells from the basolateral side to mimic the in vivo orientation. Cell monolayer integrity was assessed using electrical resistance and by measuring diffusion of uncharged molecules. BMEC monolayers form a functionally polarized and leaky barrier, with maximal resistance of 160 omega . cm2 and significant flux of molecules of molecular weight less than 350 Da. Treatment with rat or human astroglioma cells rather than pericytoma cells or transformed fibroblasts results in a concentration-dependent 200-440% increase in electrical resistance and a coincident 50% decrease in permeability to sucrose and dextran (70 kDa). The decrease in passive diffusion is most likely due to a change in tight junctions and not to transcellular vesicular traffic. The findings support that astroglioma cells release one or more signals that are required for cultured BMECs to express a "differentiated" phenotype associated with a tighter barrier, increased gamma-glutamyl transpeptidase activity, and decreased pinocytic activity. The relative ease and quickness of this culture system makes it amenable to studies on cell-cell interaction and regulation of barrier maintenance.  相似文献   

10.
11.
Summary Brain microvessel endothelial cells (BMEC) exhibit the tendency to migrate through 3.0-vm pore semipermeable inserts and establish monolayers on both apical and basal filter surfaces. This can potentially lead to complications in accurately assessing a wide variety of physiologic parameters uniquely associated with these cells. To avoid this problem, we have explored growing BMEC on Transwell filters coated with hydrated collagen gels. BMEC seeded on such gels grow as a monolayer until confluency, but do not invade the subendothelial collagen matrix or the underlying support filter. Furthermore, BMEC grown in this manner exhibit biochemical, morphologic, and electrophysiologic properties reflective of the endothelial cells that comprise the blood-brain barrier in vivo. Although the collagen gel acts as an impenetrable barrier to BMEC, and thus ensures the growth of only a single layer of cells, it nevertheless can be infiltrated by monocytes that have been stimulated by a chemotaxin to undergo diapedesis. Thus, growing BMEC on collagen gel-coated Transwells has broad applications for the in vitro study of both blood-brain barrier physiology as well as the mechanisms underlying central nervous system inflammation.  相似文献   

12.
The brain is partially protected from chemical insults by a physical barrier mainly formed by the cerebral microvasculature, which prevents penetration of hydrophilic molecules in the cerebral extracellular space. This results from the presence of tight junctions joining endothelial cells, and from a low transcytotic activity in endothelial cells, inducing selective permeability properties of cerebral microvessels that characterize the blood-brain barrier. The endothelial cells provide also, as a result of their drug-metabolizing enzymes activities, a metabolic barrier against potentially penetrating lipophilic substances. It has been established that in cerebrovascular endothelial cells, several families of enzymes metabolize potentially toxic lipophilic substrates from both endogenous and exogenous origin to polar metabolites, which may not be able to penetrate further across the blood-brain barrier. Enzymes of drug metabolism present at brain interfaces devoid of blood-brain barrier, like circumventricular organs, pineal gland, and hypophysis, that are potential sites of entry for xenobiotics, display higher activities than in cerebrovascular endothelial cells, and conjugation activities are very high in the choroid plexus. Finally, xenobiotic metabolism normally results in detoxication, but also in some cases in the formation of pharmacologically active or neurotoxic products, possibly altering some blood-brain barrier properties.  相似文献   

13.
A spontaneous tube-forming clone of rat cerebral resistance-vessel endothelium was characterized in long-term serial culture. In this study, a clone, RV-150 ECT, of cerebral resistance vessel endothelial cells in long-term culture has been shown to have a subpopulation of γ-GTP positive cells that are present in all cultures regardless of confluency status or tube-forming stages. In pre-confluent and confluent cultures, the γ-GTP positive cells are few in number, stain weakly, and are randomly distributed in the monolayers. In monolayer post-confluent cultures, γ-GTP positive cells increase in number, stain strongly, and begin to show signs of non-random distributions. In early post-confluent cultures that have become a mixture of monolayer and multilayer cells, there is a further increase in γ-GTP positive cells which begin to form distinct groupings. In mid post-confluent fultures, the multilayered areas of the culture have begun clustering to form clear multicellular aggregates. The γ-GTP positive cells at this stage are reduced in number and are predominately associated with the cell clusters. In late postconfluent cultures, the multicellular clusters develop clear cell cords between/among the clusters. At this stage the γ-GTP positive cells are associated exclusively with cell clustters. With cord development, the γ-GTP positive cells are associated with bothe clusters and cords, and are reduced in number apparently because of selective degeneration of these cells. The results of this study demonstrate that a phenotypically distinct subpopulation of endothelial cells exhibits characteristic features of the blood-brain barrier, namely γ-GTP. The ability of these cells to express this property in long-term serial culture suggests that this may represent a useful in vitro model to study the growth and differentiation of bloodbrain barrier vessels. © 1993 Wiley-Liss, Inc.  相似文献   

14.
Summary Sharks and skates (Chondrichthyes: Elasmobranchii) have a glial blood-brain barrier, while all other vertebrates examined so far have an endothelial barrier. For comparative reasons it is desirable to examine the blood-brain barrier in species from the other subclass of cartilaginous fish, the holocephalans. The ultrastructure of cerebral capillaries in the chimaera (Chondrichthyes: Holocephali) is described in the present study. The endothelial cells are remarkably thick. Fenestrae and transendothelial channels were not observed. The endothelial cells are joined by elaborate tight junctions. The perivascular glial processes are separated by wide spaces (15–60nm) without obliterating junctional complexes. These findings indicate that the chimaera has an endothelial blood-brain barrier.  相似文献   

15.
The microvessels of the rat subfornical organ (SFO) are heterogeneous: those of the caudal part lack a blood-brain barrier (BBB) unlike those of the rostral part. The astroglial environment of these microvessels has been studied by combining an immunocytochemical technique employing an anti-GFAP (glial fibrillary acidic protein) antiserum with the morphological detection of a barrier to the protein-silver complex. All the SFO microvessels are surrounded by astrocytes characterized by a tumescent aspect; however, the relative proximity between the astrocytic feet and the endothelial cells varies considerably. The capillaries provided with a barrier (rostral SFO) are contiguous with the astrocytes from which they are only separated by a basement membrane. The capillaries devoid of BBB (caudal SFO) are surrounded by a pericapillary space that keeps the astrocytes at a short distance (capillaries with a very rich vesicular endothelium) or at a long distance (capillaries with a fenestrated endothelium). The astrocytes are absent in the choroid plexus where all microvessels are fenestrated and lack a barrier. These data suggest that the astrocytes release one or more signals which in their vicinity inhibit the expression of endothelial morphological characteristics (fenestrations, vesicles) responsible for the leakage of plasmatic proteins from the blood to the cerebral parenchyma of the circumventricular organs.  相似文献   

16.
The blood-brain barrier consists of the cerebral microvascular endothelium, pericytes, astrocytes and neurons. In this study we analyzed the differentiation stage dependent influence of primary porcine brain capillary pericytes on the barrier integrity of primary porcine brain capillary endothelial cells. At first, we were able to induce two distinct differentiation stages of the primary pericytes in vitro. TGFβ treated pericytes expressed more α-SMA and actin while desmin, vimentin and nestin expression was decreased when compared to bFGF induced cells. Further analysis of α-SMA revealed that most of the pericytes differentiated with TGFβ expressed functional α-SMA while only few cells expressed functional α-SMA in the presence of bFGF. In addition the permeability factors VEGF, MMP-2 and MMP-9 were higher secreted by the α-SMA positive phenotype indicating a proangiogenic role of this TGFβ induced pericyte differentiation stage. Higher level of VEGF, MMP-2 and MMP-9 were as well detected in the TGFβ pretreated pericyte coculture with endothelial cells when compared to the influence of the bFGF pretreated pericytes. The TEER measurement of the barrier integrity of endothelial cells revealed that bFGF induced α-SMA negative pericytes stabilize the barrier integrity while α-SMA positive pericytes differentiated by TGFβ decrease the barrier integrity. These results together reveal the potential of pericytes to regulate the endothelial barrier integrity in a differentiation stage dependant pathway.  相似文献   

17.
The P-glycoproteinmdr is expressed not only in tumoral cells, but also in nontransformed cells, including the specialized endothelial cells of brain capillaries which build up the blood-brain barrier. Since all previously identified blood-brain barrier markers are rapidly lost when cerebral capillary endothelial cells are maintained in primary culture, we have investigated whether P-glycoprotein (P-gp) would follow the same rule, in order to address the influence of the cerebral environment on the specific P-gp expression in the brain endothelium. As compared to freshly isolated purified cerebral capillaries, P-glycoprotein was detected by immunochemistry at a high level in 5–7 day primary cultures. In our culture conditions, P-glycoprotein was immunodetected at a lower molecular weight than that found in freshly isolated capillaries. Enzymatic deglycosylation led to the same 130 kDa protein for both fresh and cultured samples, suggesting that P-gp post-translational modifications were altered in primary cultures. However, studies on the uptake and efflux of the P-gp substrate [3H]vinblastine, and on the effect of variousmdr reversing agents on the uptake and efflux, clearly indicated that the efflux pump function of the P-glycoprotein was maintained in primary cultures of bovine cerebral capillary endothelial cells. P-Glycoprotein may thus represent the first blood-brain barrier marker which is maintained in cerebral endothelial cells cultured in the absence of factors originating from the brain parenchyma.Abbreviations BBB blood-brain barrier - BCEC brain capillary endothelial cells - -GT -glutamyltranspeptidase - HBSS Hank's balanced salt solution - Mab monoclonal antibody - mdr multidrug resistance - P-gp P-glycoprotein  相似文献   

18.
Sertoli cells from immature rats (18 days old) were cultured on Millipore filters impregnated with reconstituted basement membrane in bicameral chambers. Three types of cultures were obtained: 1) confluent monolayer cultures that formed a permeability barrier (impermeable), 2) confluent monolayer cultures that did not form a permeability barrier (permeable), and 3) subconfluent cultures (permeable). The relationships among fluid equilibrium, electrical resistance, and [3H]inulin transport between the apical and basal reservoirs of the chambers were examined. An impermeable confluent monolayer is defined when the cells of the Sertoli cell epithelial sheet are able to prevent hydrodynamic equilibration of fluid levels between the apical and basal reservoirs of a bicameral chamber. That is, a permeability barrier is present between the two sides of the chamber when fluid levels (volumes) do not change. In the impermeable confluent Sertoli cell monolayers, 7.5 +/- 0.6% of added [3H]inulin diffused across the monolayer during a 6-h collection period versus 13.7 +/- 0.5% in permeable cultures. Conversely, the electrical resistance was higher in the impermeable monolayers (41-71 ohm.cm2) than in the permeable layers (less than 33 ohm.cm2). A reciprocal linear relationship (Y = -4.68(X) + 91.50, r = 0.808) exists between inulin flux and electrical resistance, and this relationship is a function of cell density. Transferrin (Tf) was one of a few proteins detected in the basal medium of bicameral chambers, whereas most de novo synthesized proteins were secreted into the apical reservoir of the chamber. No significant differences in the total amount of Tf secreted by impermeable or permeable monolayers of Sertoli cells were observed. However, the Sertoli cell secretion ratios (apical/basal) of Tf during a 15-20-h collection period were 2.03 and 1.57 for impermeable monolayers plated at 2.4 x 10(6) and 3.6 x 10(6) cells/well, respectively, but less than 1.0 in permeable layers of cells. When fewer than 2 x 10(6) Sertoli cells were plated, the apical/basal polarity of Tf secretion declined to below 1 in a 24-h culture period, even though those chambers contained impermeable monolayers (recognized by the lack of hydrodynamic equilibrium). These results indicate that polarized secretion by Sertoli cells is dependent on (1) plating density and (2) formation of an impermeable epithelial sheet.  相似文献   

19.
20.
The mechanism of blood-brain barrier breakdown in the complex pathogenesis of cerebral malaria is not well understood. In this study, primary cultures of porcine brain capillary endothelial cells (PBCEC) were used as in vitro model. Membrane-associated malaria antigens obtained from lysed Plasmodium falciparum schizont-infected erythrocytes stimulated human peripheral blood mononuclear cells (PBMC) to secrete tumor necrosis factor alpha. In co-cultivation with the brain endothelial cell model, the malaria-activated PBMC stimulated the expression of E-selectin and ICAM-1 on the PBCEC. Using electric cell-substrate impedance sensing, we detected a significant decrease of endothelial barrier function within 4h of incubation with the malaria-activated PBMC. Correspondingly, immunocytochemical studies showed the disruption of tight junctional complexes. Combination of biochemical and biophysical techniques provides a promising tool to study changes in the blood-brain barrier function associated with cerebral malaria. Moreover, it is shown that the porcine endothelial model is able to respond to human inflammatory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号