首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment of triple‐negative breast cancer (TNBC) remains challenging due to a lack of effective targeted therapies. Dysregulated glucose uptake and metabolism are essential for TNBC growth. Identifying the molecular drivers and mechanisms underlying the metabolic vulnerability of TNBC is key to exploiting dysregulated cancer metabolism for therapeutic applications. Mitogen‐inducible gene‐6 (MIG‐6) has long been thought of as a feedback inhibitor that targets activated EGFR and suppresses the growth of tumors driven by constitutive activated mutant EGFR. Here, our bioinformatics and histological analyses uncover that MIG‐6 is upregulated in TNBC and that MIG‐6 upregulation is positively correlated with poorer clinical outcomes in TNBC. Metabolic arrays and functional assays reveal that MIG‐6 drives glucose metabolism reprogramming toward glycolysis. Mechanistically, MIG‐6 recruits HAUSP deubiquitinase for stabilizing HIF1α protein expression and the subsequent upregulation of GLUT1 and other HIF1α‐regulated glycolytic genes, substantiating the comprehensive regulation of MIG‐6 in glucose metabolism. Moreover, our mouse studies demonstrate that MIG‐6 regulates GLUT1 expression in tumors and subsequent tumor growth in vivo. Collectively, this work reveals that MIG‐6 is a novel prognosis biomarker, metabolism regulator, and molecular driver of TNBC.  相似文献   

2.
3.
Triple‐negative breast cancer (TNBC) is a type of breast cancer that has a higher risk of distant recurrence and metastasis, leading to a relatively aggressive biological behaviour and poor outcome. So far, the clinical management of TNBC is challenging because of its heterogeneity and paucity of specific targeted therapy. Recently, various studies have identified a lot of differently expressed long non‐coding RNAs (lncRNAs) in TNBC. Those lncRNAs have been reported to play important roles in the multistep process of TNBC tumorigenesis. Here, we review the biological characteristics of lncRNAs, and present the current state of knowledge concerning the expression, function and regulation of lncRNAs in TNBC. Accumulating studies explored the potential lncRNAs‐based therapeutics in TNBC, including the techniques of genetic modification using antisense oligonucleotides, locked nucleic acid and RNA nanotechnology. In current review, we also discuss the future prospects of studies about lncRNAs in TNBC and development of lncRNA‐based strategies for clinical TNBC patients.  相似文献   

4.
KP167 is a novel hypoxia‐activated prodrug (HAP), targeting cancer cells via DNA intercalating and alkylating properties. The single agent and radiosensitizing efficacy of KP167 and its parental comparator, AQ4N, were evaluated in 2D and 3D cultures of luminal and triple negative breast cancer (TNBC) cell lines and compared against DNA damage repair inhibitors. 2D normoxic treatment with the DNA repair inhibitors, Olaparib or KU‐55933 caused, as expected, substantial radiosensitization (sensitiser enhancement ratio, SER0.01 of 1.60–3.42). KP167 induced greater radiosensitization in TNBC (SER0.01 2.53 in MDAMB‐231, 2.28 in MDAMB‐468, 4.55 in MDAMB‐436) and luminal spheroids (SER0.01 1.46 in MCF‐7 and 1.76 in T47D cells) compared with AQ4N. Significant radiosensitization was also obtained using KP167 and AQ4N in 2D normoxia. Although hypoxia induced radioresistance, radiosensitization by KP167 was still greater under 2D hypoxia, yielding SER0.01 of 1.56–2.37 compared with AQ4N SER0.01 of 1.13–1.94. Such data show KP167 as a promising single agent and potent radiosensitiser of both normoxic and hypoxic breast cancer cells, with greater efficacy in TNBCs.  相似文献   

5.
Unlike other types of breast cancers (BCs), no specific therapeutic targets have been established for triple negative breast cancer (TNBC). Therefore, chemotherapy and radiotherapy are the only available adjuvant therapeutic choices for TNBC. New emerging reports show that TNBC is associated with higher numbers of intratumoral tumor infiltrating lymphocytes. This is indicative of host anti-TNBC immune surveillance and suggesting that immunotherapy can be considered as a therapeutic approach for TNBC management. Recent progress in molecular mechanisms of tumor-immune system interaction and cancer vaccine development studies, fast discoveries and FDA approvals of immune checkpoint inhibitors, chimeric antigen receptor T-cells, and oncolytic virotherapy have significantly attracted attention and research directions toward the immunotherapeutic approach to TNBC. Here in this review different aspects of TNBC immunotherapies including the host immune system-tumor interactions, the tumor microenvironment, the relevant molecular targets for immunotherapy, and clinical trials in the field are discussed.  相似文献   

6.
Triple-negative breast cancer (TNBC) lacks significant expression of the estrogen receptor, the progesterone receptor, and of human epidermal growth factor receptor. It is the most aggressive and malignant of all breast cancers, and for which, there are currently no effective targeted therapies. We have shown previously that the RecQ helicase family member RECQL5 is essential for the proliferation and survival of TNBC cells; however, the mechanism of its involvement in cell viability has not been shown. Here, we report that the expression of RecQ family helicases, including RECQL5, is regulated by the deubiquitinase USP28. We found using genetic depletion or a small molecule inhibitor that like RECQL5, USP28 is also essential for TNBC cells to proliferate in vitro and in vivo. Compromising the function of USP28 by shRNA knockdown or the inhibitor caused TNBC cells to arrest in S/G2 phases, concurrent with DNA-damage checkpoint activation. We further showed that the small molecule inhibitor of USP28 displayed anti-tumor activity against xenografts derived from TNBC cells. Our results suggest that USP28 could be a potential therapeutic target for triple negative breast cancer.  相似文献   

7.
8.
Previous studies have shown that expression of activator protein-1 (AP-1) family is significantly elevated in triple-negative breast cancer (TNBC), compared with that in other breast cancer subtypes. Here we investigated the anti-tumor effect and mechanism of T-5224, an inhibitor of c-Fos/AP-1, on TNBC. We identified that T-5224 inhibited the proliferation, migration, and invasion of TNBC cells and resulted in an increase in apoptosis. Furthermore, we found that OLFML2A is a key regulatory protein acting downstream of AP-1 and is involved in T-5224-targeted AP-1 action. Multiple clinical databases online have identified that high OLFML2A level is associated with poor prognosis in TNBC patients. In summary, our experimental and bioinformatic studies indicated that OLFML2A is necessary for AP-1-overexpressing TNBC. These findings demonstrate that AP-1-overexpressing TNBC dependent on OLFML2A, and targeting both AP-1 and OLFML2A through T‐5224 may be a synergistic therapeutic strategy for this clinically challenging subset of breast cancer.  相似文献   

9.
Triple negative breast cancer (TNBC) is a type of aggressive breast cancer lacking the expression of estrogen receptors (ER), progesterone receptors (PR) and human epidermal growth factor receptor-2 (HER-2). TNBC patients account for approximately 15% of total breast cancer patients and are more prevalent among young African, African-American and Latino women patients. The currently available ER-targeted and Her-2-based therapies are not effective for treating TNBC. Recent studies have revealed a number of novel features of TNBC. In the present work, we comprehensively addressed these features and discussed potential therapeutic approaches based on these features for TNBC, with particular focus on: 1) the pathological features of TNBC/basal-like breast cancer; 2) E2/ERβ-mediated signaling pathways; 3) G-protein coupling receptor-30/epithelial growth factor receptor (GPCR-30/EGFR) signaling pathway; 4) interactions of ERβ with breast cancer 1/2 (BRCA1/2); 5) chemokine CXCL8 and related chemokines; 6) altered microRNA signatures and suppression of ERα expression/ERα-signaling by micro-RNAs; 7) altered expression of several pro-oncongenic and tumor suppressor proteins; and 8) genotoxic effects caused by oxidative estrogen metabolites. Gaining better insights into these molecular pathways in TNBC may lead to identification of novel biomarkers and targets for development of diagnostic and therapeutic approaches for prevention and treatment of TNBC.  相似文献   

10.
Despite substantial developments in conventional treatments such as surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular‐targeted therapy, breast cancer remains the leading cause of cancer mortality in women. Currently, chimeric antigen receptor (CAR)–redirected immune cell therapy has emerged as an innovative immunotherapeutic approach to ameliorate survival rates of breast cancer patients by eliciting cytotoxic activity against cognate tumour‐associated antigens expressing tumour cells. As a crucial component of adaptive immunity, T cells and NK cells, as the central innate immune cells, are two types of pivotal candidates for CAR engineering in treating solid malignancies. However, the biological distinctions between NK cells‐ and T cells lead to differences in cancer immunotherapy outcomes. Likewise, optimal breast cancer removal via CAR‐redirected immune cells requires detecting safe target antigens, improving CAR structure for ideal immune cell functions, promoting CAR‐redirected immune cells filtration to the tumour microenvironment (TME), and increasing the ability of these engineered cells to persist and retain within the immunosuppressive TME. This review provides a concise overview of breast cancer pathogenesis and its hostile TME. We focus on the CAR‐T and CAR‐NK cells and discuss their significant differences. Finally, we deliver a summary based on recent advancements in the therapeutic capability of CAR‐T and CAR‐NK cells in treating breast cancer.  相似文献   

11.
三阴性乳腺癌(triple negative breast cancer, TNBC)占全部乳腺癌病例的15%~20%,其雌激素受体、孕激素受体和人表皮生长因子受体2均为阴性表达,也是所有乳腺癌亚型中侵袭性和恶性程度较高的一种。TNBC还具有较高的复发风险和较差的预后特性。由于异质性高、临床特征复杂,化疗、放疗和手术切除等手段仍是当前TNBC治疗的主要方法。然而,严重的副作用、高复发风险和健康损伤等问题仍然不容忽视。随着TNBC基础研究的进展,越来越多的TNBC靶向治疗相关信号通路被揭示,而且其中有一部分已进入临床试验,为TNBC的治疗提供了充满希望和前景的分子靶点。此外,其中一些治疗靶点在TNBC精确分型和精准治疗的临床实践中发挥着重要的作用。本文对TNBC靶向治疗中经典的合成致死通路、PI3K/AKT/mTOR通路、PD-1/PD-L1免疫通路等信号通路及其临床试验进行了综述,同时介绍了近几年比较具有潜力的TNBC靶向治疗信号通路,包括肿瘤血管生成通路、多胺合成和分解代谢通路、SLC3A2/LAT1通路以及IGF-1/IGF-1R/FAK/YAP信号转导通路等。  相似文献   

12.
Triple negative breast cancer (TNBC) has the poorest prognosis of all types of breast cancer and currently lacks efficient targeted therapy. Chemotherapy is the traditional standard-of-care for TNBC, but is frequently accompanied by severe side effects. Despite the fact that high expression of steroid receptor coactivator 3 (SRC–3) is correlated with poor survival in estrogen receptor positive breast cancer patients, its role in TNBC has not been extensively investigated. Here, we show that high expression of SRC–3 correlates with both poor overall survival and post progression survival in TNBC patients, suggesting that SRC–3 can serve as a prognostic marker for TNBC. Furthermore, we demonstrated that bufalin, a SRC–3 small molecule inhibitor, when introduced even at nM concentrations, can significantly reduce TNBC cell viability and motility. However, because bufalin has minimal water solubility, its in vivo application is limited. Therefore, we developed a water soluble prodrug, 3-phospho-bufalin, to facilitate its in vivo administration. In addition, we demonstrated that 3-phospho-bufalin can effectively inhibit tumor growth in an orthotopic TNBC mouse model, suggesting its potential application as a targeted therapy for TNBC treatment.  相似文献   

13.
Cinnamon is a wildly used traditional Chinese herbal medicine for osteoarthritis (OA) treatment, but the underlying mechanism remains ambiguous. The purpose of this study is to explore the mechanism of cinnamic aldehyde (CA), a bioactive substance extracted from Cinnamon, on synovial inflammation in OA. A total of 144 CA‐OA co‐targeted genes were identified by detect databases (PubChem, HIT, TCMSP, TTD, DrugBank and GeneCards). The results of GO enrichment analysis indicated that these co‐targeted genes have participated in many biological processes including ‘inflammatory response’, ‘cellular response to lipopolysaccharide’, ‘response to drug’, ‘immune response’, ‘lipopolysaccharide‐mediated signalling pathway’, etc. KEGG pathway analysis showed these co‐targeted genes were mainly enriched in ‘Toll‐like receptor signalling pathway’, ‘TNF signalling pathway’, ‘NF‐kappa B signalling pathway’, etc. Molecular docking demonstrated that CA could successfully bind to TLR2 and TLR4. The results of in vitro experiments showed no potential toxicity of 10, 20 and 50 μM/L CA on human OA FLS, and CA can significantly inhibit the inflammation in LPS‐induced human FLS. Further experimental mechanism evidence confirmed CA can inhibited the inflammation in LPS‐induced human OA FLS via blocking the TLR4/MyD88 signalling pathway. Our results demonstrated that CA exhibited strong anti‐inflammation effect in OA FLS through blocking the activation of TLR4/MyD88 signalling pathway, suggesting its potential as a hopeful candidate for the development of novel agents for the treatment of OA.  相似文献   

14.
Metastatic triple-negative breast cancer (TNBC) has a low 5-year survival rate of below 30% with systemic chemotherapy being the most widely used treatment. Bovine milk-derived extracellular vesicles (MEVs) have been previously demonstrated to have anti-cancer attributes. In this study, we isolated bovine MEVs from commercial milk and characterised them according to MISEV guidelines. Bovine MEVs sensitised TNBC cells to doxorubicin, resulting in reduced metabolic potential and cell-viability. Label-free quantitative proteomics of cells treated with MEVs and/or doxorubicin suggested that combinatorial treatment depleted various pro-tumorigenic interferon-inducible gene products and proteins with metabolic function, previously identified as therapeutic targets in TNBC. Combinatorial treatment also led to reduced abundance of various STAT proteins and their downstream oncogenic targets with roles in cell-cycle and apoptosis. Taken together, this study highlights the ability of bovine MEVs to sensitise TNBC cells to standard-of-care therapeutic drug doxorubicin, paving the way for novel treatment regimens.  相似文献   

15.
16.
Expression of the receptor tyrosine kinase ephrin receptor A10 (EphA10), which is undetectable in most normal tissues except for the male testis, has been shown to correlate with tumor progression and poor prognosis in several malignancies, including triple-negative breast cancer (TNBC). Therefore, EphA10 could be a potential therapeutic target, likely with minimal adverse effects. However, no effective clinical drugs against EphA10 are currently available. Here, we report high expression levels of EphA10 in tumor regions of breast, lung, and ovarian cancers as well as in immunosuppressive myeloid cells in the tumor microenvironment. Furthermore, we developed anti-EphA10 monoclonal antibodies (mAbs) that specifically recognize cell surface EphA10, but not other EphA family isoforms, and target tumor regions precisely in vivo with no apparent accumulation in other organs. In syngeneic TNBC mouse models, we found that anti-EphA10 mAb clone #4 enhanced tumor regression, therapeutic response rate, and T cell–mediated antitumor immunity. Notably, the chimeric antigen receptor T cells derived from clone #4 significantly inhibited TNBC cell viability in vitro and tumor growth in vivo. Together, our findings suggest that targeting EphA10 via EphA10 mAbs and EphA10-specific chimeric antigen receptor–T cell therapy may represent a promising strategy for patients with EphA10-positive tumors.  相似文献   

17.
Nearly 40 000 women die annually from breast cancer in the United States. Clinically available targeted breast cancer therapy is largely ineffective in triple negative breast cancer (TNBC), characterized by tumors that lack expression of the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (Her2). TNBC is associated with a poor prognosis. Previous reports show that aryl hydrocarbon receptor (AhR) partial agonist 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203) selectively inhibits the growth of breast cancer cells, including those of the TNBC subtype. We previously demonstrated that 5F 203 induced the expression of putative tumor suppressor gene cytoglobin (CYGB) in breast cancer cells. In the current study, we determined that 5F 203 induces apoptosis and caspase-3 activation in MDA-MB-468 TNBC cells and in T47D ER+ PR + Her2 breast cancer cells. We also show that caspases and CYGB promote 5F 203–mediated apoptosis in MDA-MB-468 cells. 5F 203 induced lysosomal membrane permeabilization (LMP) and cathepsin B release in MDA-MB-468 and T47D cells. In addition, silencing CYGB attenuated the ability of 5F 203 to induce caspase-3/-7 activation, proapoptotic gene expression, LMP, and cathepsin B release in MDA-MB-468 cells. Moreover, 5F 203 induced CYGB protein expression, proapoptotic protein expression, and caspase-3 cleavage in MDA-MB-468 cells and in MDA-MB-468 xenograft tumors grown orthotopically in athymic mice. These data provide a basis for the development of AhR ligands with the potential to restore CYGB expression as a novel strategy to treat TNBC.  相似文献   

18.
African-American women have a higher risk for developing triple-negative breast cancer (TNBC). Lacking the expression of receptors for estrogen and progesterone, and without human epidermal growth factor 2 receptor gene amplification, TNBC is a very aggressive type of breast cancer with a high likelihood of metastasis and recurrence. Specific therapeutic targets for this aggressive disease remain to be identified. Phosphorylation, a post-translational modification that adds one or more phosphate groups to a protein, plays a key role in the activation and deactivation of a protein’s cellular function. Here, we report the first systematic phosphoproteomic analysis of a benign breast tissue, a primary breast cancer tissue, and a metastatic breast cancer tissue from the same African-American woman. Differential phosphoprotein levels were measured with reversed-phase nano-liquid chromatography coupled to a hybrid linear quadrupole ion trap/Fourier transform ion cyclotron resonance mass spectrometer (LC-LTQ/FT-ICR MS). Five proteins were found to be highly phosphorylated in the metastatic site whereas six proteins were highly phosphorylated in the cancer site of the TNBC patient. Identified phosphoproteins are known to be involved in breast cancer signal transduction pathways and these results may identify new diagnostic and therapeutic targets for TNBC.  相似文献   

19.
Triple‐negative breast cancer (TNBC) is a highly aggressive tumour subtype associated with poor prognosis. The mechanisms involved in TNBC progression remains largely unknown. To date, there are no effective therapeutic targets for this tumour subtype. Paired‐related homeobox 1b (Prrx1b), one of major isoforms of Prrx1, has been identified as a new epithelial–mesenchymal transition (EMT) inducer. However, the function of Prrx1b in TNBC has not been elucidated. In this study, we found that Prrx1b was significantly up‐regulated in TNBC and associated with tumour size and vascular invasion of breast cancer. Silencing of Prrx1b suppressed the proliferation, migration and invasion of basal‐like cancer cells. Moreover, silencing of Prrx1b prevented Wnt/β‐catenin signaling pathway and induced the mesenchymal‐epithelial transition (MET). Taken together, our data indicated that Prrx1b may be an important regulator of EMT in TNBC cells and a new therapeutic target for interventions against TNBC invasion and metastasis.  相似文献   

20.
Cancer immune plays a critical role in cancer progression. Tumour immunology and immunotherapy are one of the exciting areas in bladder cancer research. In this study, we aimed to develop an immune‐related gene signature to improve the prognostic prediction of bladder cancer. Firstly, we identified 392 differentially expressed immune‐related genes (IRGs) based on TCGA and ImmPort databases. Functional enrichment analysis revealed that these genes were enriched in inflammatory and immune‐related pathways, including in ‘regulation of signaling receptor activity’, ‘cytokine‐cytokine receptor interaction’ and ‘GPCR ligand binding’. Then, we separated all samples in TCGA data set into the training cohort and the testing cohort in a ratio of 3:1 randomly. Data set GSE13507 was set as the validation cohort. We constructed a prognostic six‐IRG signature with LASSO Cox regression in the training cohort, including AHNAK, OAS1, APOBEC3H, SCG2, CTSE and KIR2DS4. Six IRGs reflected the microenvironment of bladder cancer, especially immune cell infiltration. The prognostic value of six‐IRG signature was further validated in the testing cohort and the validation cohort. The results of multivariable Cox regression and subgroup analysis revealed that six‐IRG signature was a clinically independent prognostic factor for bladder cancer patients. Further, we constructed a nomogram based on six‐IRG signature and other clinicopathological risk factors, and it performed well in predict patients'' survival. Finally, we found six‐IRG signature showed significant difference in different molecular subtypes of bladder cancer. In conclusions, our research provided a novel immune‐related gene signature to estimate prognosis for patients'' survival with bladder cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号