首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell receptor (TCR) recognition of peptide takes place in the context of the major histocompatibility complex (MHC) molecule, which accounts for approximately two-thirds of the peptide/MHC buried surface. Using the class I MHC HLA-A2 and a large panel of mutants, we have previously shown that surface mutations that disrupt TCR recognition vary with the identity of the peptide. The single exception is Lys66 on the HLA-A2 alpha1 helix, which when mutated to alanine disrupts recognition for 93% of over 250 different T cell clones or lines, independent of which peptide is bound. Thus, Lys66 could serve as a peptide-independent TCR binding determinant. Here, we have examined the role of Lys66 in TCR recognition of HLA-A2 in detail. The structure of a peptide/HLA-A2 molecule with the K66A mutation indicates that although the mutation induces no major structural changes, it results in the exposure of a negatively charged glutamate (Glu63) underneath Lys66. Concurrent replacement of Glu63 with glutamine restores TCR binding and function for T cells specific for five different peptides presented by HLA-A2. Thus, the positive charge on Lys66 does not serve to guide all TCRs onto the HLA-A2 molecule in a manner required for productive signaling. Furthermore, electrostatic calculations indicate that Lys66 does not contribute to the stability of two TCR-peptide/HLA-A2 complexes. Our findings are consistent with the notion that each TCR arrives at a unique solution of how to bind a peptide/MHC, most strongly influenced by the chemical and structural features of the bound peptide. This would not rule out an intrinsic affinity of TCRs for MHC molecules achieved through multiple weak interactions, but for HLA-A2 the collective mutational data place limits on the role of any single MHC amino acid side-chain in driving TCR binding in a peptide-independent fashion.  相似文献   

2.
Single and dual amino acid substitution variants were generated in the TCR CDRs of three TCRs that recognize tumor-associated Ags. Substitutions that enhance the reactivity of TCR gene-modified T cells to the cognate Ag complex were identified using a rapid RNA-based transfection system. The screening of a panel of variants of the 1G4 TCR, that recognizes a peptide corresponding to amino acid residues 157-165 of the human cancer testis Ag NY-ESO-1 (SLLMWITQC) in the context of the HLA-A*02 class I allele, resulted in the identification of single and dual CDR3alpha and CDR2beta amino acid substitutions that dramatically enhanced the specific recognition of NY-ESO-1(+)/HLA-A*02(+) tumor cell lines by TCR gene-modified CD4(+) T cells. Within this group of improved TCRs, a dual substitution in the 1G4 TCR CDR3alpha chain was identified that enhanced Ag-specific reactivity in gene-modified CD4(+) and CD8(+) T cells. Separate experiments on two distinct TCRs that recognize the MART-1 27-35 (AAGIGILTV) peptide/HLA-A*02 Ag complex characterized single amino acid substitutions in both TCRs that enhanced CD4(+) T cell Ag-specific reactivity. These results indicate that simple TCR substitution variants that enhance T cell function can be identified by rapid transfection and assay techniques, providing the means for generating potent Ag complex-specific TCR genes for use in the study of T cell interactions and in T cell adoptive immunotherapy.  相似文献   

3.
The structures of alphabeta TCRs bound to complexes of class I MHC molecules and peptide show that the TCRs make multiple contacts with the alpha1 and alpha2 helixes of the MHC. Previously we have shown that the A6 TCR in complex with the HLA-A2/Tax peptide has 15 contact sites on HLA-A2. Single amino acid mutagenesis of these contact sites demonstrated that mutation of only three amino acids clustered on the alpha1 helix (R65, K66, A69) disrupted recognition by the A6 TCR. In the present study we have asked whether TCRs that recognize four other peptides presented by HLA-A2 interact with the MHC in identical, similar, or different patterns as the A6 TCR. Mutants K66A and Q155A had the highest frequency of negative effects on lysis. A subset of peptide-specific CTL also selectively recognized mutants K66A or Q155A in the absence of exogenous cognate peptides, indicating that these mutations affected the presentation of endogenous peptide/HLA-A2 complexes. These findings suggest that most HLA-A2-restricted TCRs recognize surfaces on the HLA-A2/peptide complex that are dependent upon the side chains of K66 and Q155 in the central portion of the peptide binding groove. Crystallographic structures of several peptide/HLA-A2 structures have shown that the side chains of these critical amino acids that make contact with the A6 TCR also contact the bound peptide. Collectively, our results indicate that the generalized effects of changes at these critical amino acids are probably due to the fact that they can be directly contacted by TCRs as well as influence the binding and presentation of the bound peptides.  相似文献   

4.
5.
Specificity in the immune system is dictated and regulated by specific recognition of peptide/major histocompatibility complexes (MHC) by the T cell receptor (TCR). Such peptide/MHC complexes are a desirable target for novel approaches in immunotherapy because of their highly restricted fine specificity. Recently a potent anti-human p53 CD8(+) cytotoxic T lymphocyte (CTL) response has been developed in HLA-A2 transgenic mice after immunization with peptides corresponding to HLA-A2 motifs from human p53. An alpha/beta T-cell receptor was cloned from such CTL which exhibited a moderately high affinity to the human p53(149-157) peptide. In this report, we investigated the possibility of using a recombinant tumor-specific TCR for antigen-specific elimination of cells that express the specific MHC-peptide complex. To this end, we constructed a functional single-chain Fv fragment from the cloned TCR and fused it to a very potent cytotoxic molecule, a truncated form of Pseudomonas exotoxin A (PE38). The p53 TCR scFv-P38 fusion protein was generated by in vitro refolding from bacterially-expressed inclusion bodies, and was found to be functional by its ability to bind antigen-presenting cells (APC) which express the specific p53-derived peptide. Moreover, we have shown that the p53-specific TCR scFv-PE38 molecule specifically kills APC in a peptide-dependent manner. These results represent the first time that a TCR-derived recombinant single-chain Fv fragment has been used as a targeting moiety to deliver a cytotoxic effector molecule to cells and has been able to mediate the efficient killing of the particular cell population that expresses the specific MHC/peptide complex. Similarly to antibody-based targeting approaches, TCR with tumor cell specificity represent attractive candidates for generating new, very specific targeting moieties for various modes of cancer immunotherapy.  相似文献   

6.
p53 is an attractive target for cancer immunotherapy since it is overexpressed in half of all tumors. However, it is also expressed in normal lymphoid tissue, and self tolerance leaves a p53-specific repertoire purged of high avidity CTL. To better understand the mechanism of tolerance and the basis for such low avidity interaction, p53-specific CTL from p53 deficient (p53-) and sufficient (p53+) A2.1/Kb transgenic mice were compared with respect to their ability to bind HLA-A2.1 tetramers containing cognate murine p53 peptide Ag, p53 261-269. Since the murine CD8 molecule cannot interact with human HLA-A2.1, this tests the ability of the TCR to bind the A2.1/peptide complex tetramer. CTL from p53- mice demonstrated strong binding of such A2.1/p53 261-269 tetramers; however, the CTL from tolerant p53+ mice were devoid of tetramer-binding CD8+ T cells. Examination of TCR expression at the clonal level revealed that CTL from p53+ and p53- mice each expressed comparable levels of the p53-specific TCR. These results indicate that normal expression of p53 promotes elimination of T cells expressing TCRs with sufficient affinity to achieve stable binding of the A2.1/p53 261-269 tetramers.  相似文献   

7.
The use of recombinant T cell receptors (TCRs) to target therapeutic interventions has been hindered by the naturally low affinity of TCR interactions with peptide major histocompatibility complex ligands. Here, we use multimeric forms of soluble heterodimeric alphabeta TCRs for specific detection of target cells pulsed with cognate peptide, discrimination of quantitative changes in antigen display at the cell surface, identification of virus-infected cells, inhibition of antigen-specific cytotoxic T lymphocyte activation, and identification of cross-reactive peptides. Notably, the A6 TCR specific for the immunodominant HLA A2-restricted human T cell leukemia virus type 1 Tax(11-19) epitope bound to HLA A2-HuD(87-95) (K(D) 120 microm by surface plasmon resonance), an epitope implicated as a causal antigen in the paraneoplastic neurological degenerative disorder anti-Hu syndrome. A mutant A6 TCR that exhibited dramatically increased affinity for cognate antigen (K(D) 2.5 nm) without enhanced cross-reactivity was generated; this TCR demonstrated potent biological activity even as a monomeric molecule. These data provide insights into TCR repertoire selection and delineate a framework for the selective modification of TCRs in vitro that could enable specific therapeutic intervention in vivo.  相似文献   

8.
Using highly purified proteins, we have identified intermediate reactions that lead to the assembly of molecular chaperone complexes with wild-type or mutant p53R175H protein. Hsp90 possesses higher affinity for wild-type p53 than for the conformational mutant p53R175H. The presence of Hsp90 in a complex with wild-type p53 inhibits the binding of Hsp40 and Hsc70 to p53, consequently preventing the formation of wild-type p53-multiple chaperone complexes. The conformational mutant p53R175H can form a stable heterocomplex with Hsp90 only in the presence of Hsc70, Hsp40, Hop and ATP. The anti-apoptotic factor Bag-1 can dissociate Hsp90 from a pre- assembled complex wild-type p53 protein, but it cannot dissociate a pre-assembled p53R175H-Hsp40- Hsc70-Hop-Hsp90 heterocomplex. The results presented here provide possible molecular mechanisms that can help to explain the observed in vivo role of molecular chaperones in the stabilization and cellular localization of wild-type and mutant p53 protein.  相似文献   

9.
Therapeutic vaccination against cutaneous T cell lymphoma (CTCL) requires the characterization of cancer cell-specific CTL epitopes. Despite reported evidence for tumor-reactive cytotoxicity in CTCL patients, the nature of the recognized determinants remains elusive. The clonotypic TCR of CTCL cells is a promising candidate tumor-specific Ag. In this study, we report that the clonotypic and framework regions of the TCRs expressed in the malignant T cell clones of six CTCL patients contain multiple peptides with anchor residues fitting the patients' MHC class I molecules. We demonstrate that TCR peptide-specific T cells from the blood of healthy donors and patients can be induced to become cytotoxic effectors after repeated stimulation with 6 of 11 selected peptides with experimentally proven affinity for HLA-A*0201. Importantly, 4 of these 6 CTL lines reproducibly recognize and lyse autologous primary CTCL cells in MHC class I/CD8-dependent fashion. These tumoricidal CTL lines are directed against epitopes from V, hypervariable, and C regions of TCRalpha. We therefore conclude that recombined as well as V framework regions of the tumor cell TCRs contain predictable epitopes for CTL-mediated attack of CTCL cells. Our data further suggest that such peptides represent valuable tools for future anti-CTCL vaccination approaches.  相似文献   

10.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome   总被引:13,自引:0,他引:13  
Olive KP  Tuveson DA  Ruhe ZC  Yin B  Willis NA  Bronson RT  Crowley D  Jacks T 《Cell》2004,119(6):847-860
The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are models of Li-Fraumeni Syndrome; they developed allele-specific tumor spectra distinct from p53+/- mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including a variety of carcinomas and more frequent endothelial tumors. Dominant effects that varied by allele and function were observed in primary cells derived from p53R270H/+ and p53R172H/+ mice. These results demonstrate that point mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss of p53 function.  相似文献   

11.
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.  相似文献   

12.
Molecular mimicry between foreign and self Ags is a mechanism of TCR cross-reactivity and is thought to contribute to the development of autoimmunity. The αβ TCR A6 recognizes the foreign Ag Tax from the human T cell leukemia virus-1 when presented by the class I MHC HLA-A2. In a possible link with the autoimmune disease human T cell leukemia virus-1-associated myelopathy/tropical spastic paraparesis, A6 also recognizes a self peptide from the neuronal protein HuD in the context of HLA-A2. We found in our study that the complexes of the HuD and Tax epitopes with HLA-A2 are close but imperfect structural mimics and that in contrast with other recent structures of TCRs with self Ags, A6 engages the HuD Ag with the same traditional binding mode used to engage Tax. Although peptide and MHC conformational changes are needed for recognition of HuD but not Tax and the difference of a single hydroxyl triggers an altered TCR loop conformation, TCR affinity toward HuD is still within the range believed to result in negative selection. Probing further, we found that the HuD-HLA-A2 complex is only weakly stable. Overall, these findings help clarify how molecular mimicry can drive self/nonself cross-reactivity and illustrate how low peptide-MHC stability can permit the survival of T cells expressing self-reactive TCRs that nonetheless bind with a traditional binding mode.  相似文献   

13.
Cancer pathologies are associated with the unfolding and aggregation of most recurring mutations in the DNA Binding Domain (DBD) of p53 that coordinate the destabilization of protein. Substitution at the 175th codon with arginine to histidine (R175H, a mutation of large to small side-chain amino acid) destabilizes the DBD by 3 kcal/mol and triggers breasts, lung cancer, etc. Stabilizing the p53 mutant by small molecules offers an attractive drug-targeted anti-cancer therapy. The thiosemicarbazone (TSC) molecules NPC and DPT are known to act as zinc-metallochaperones to reactivate p53R175H. Here, a combination of LESMD simulations for 10 TSC conformations with a p53R175H receptor, single ligand-protein conformation MD, and ensemble docking with multiple p53R175H conformations observed during simulations is suggested to identify the potential binding site of the target protein in light of their importance for the direct TSC – p53R175H binding. NPC binds mutant R175H in the loop region L2-L3, forming pivotal hydrogen bonds with HIS175, pi?sulfur bonds with TYR163, and pi-alkyl linkages with ARG174 and PRO190, all of which are contiguous to the zinc-binding native site on p53DBD. DPT, on the other hand, was primarily targeting alternative binding sites such as the loop-helix L1/H2 region and the S8 strand. The similar structural characteristics of TSC-bound p53R175H complexes with wild-type p53DBD are thought to be attributable to involved interactions that favour binding free energy contributions of TSC ligands. Our findings may be useful in the identification of novel pockets with druggable properties.  相似文献   

14.
The transfer of high-avidity T cell receptor (TCR) genes isolated from rare tumor-specific lymphocytes into polyclonal T cells is an attractive cancer immunotherapy strategy. However, TCR gene transfer results in competition for surface expression and inappropriate pairing between the exogenous and endogenous TCR chains, resulting in suboptimal activity and potentially harmful unpredicted antigen specificities of the resultant TCRs. We designed zinc-finger nucleases (ZFNs) that promoted the disruption of endogenous TCR β- and α-chain genes. Lymphocytes treated with ZFNs lacked surface expression of CD3-TCR and expanded with the addition of interleukin-7 (IL-7) and IL-15. After lentiviral transfer of a TCR specific for the Wilms tumor 1 (WT1) antigen, these TCR-edited cells expressed the new TCR at high levels, were easily expanded to near purity and were superior at specific antigen recognition compared to donor-matched, unedited TCR-transferred cells. In contrast to unedited TCR-transferred cells, the TCR-edited lymphocytes did not mediate off-target reactivity while maintaining their anti-tumor activity in vivo, thus showing that complete editing of T cell specificity generates tumor-specific lymphocytes with improved biosafety profiles.  相似文献   

15.
16.
Specific p53 mutations abrogate tumor-suppressive functions by gaining new abilities to promote tumorigenesis. Inactivation of p53 is known to distort TGF-β signaling, which paradoxically displays both tumor-suppressive and pro-oncogenic functions. The molecular mechanisms of how mutant p53 simultaneously antagonizes the tumor-suppressive and synergizes the tumor-promoting function of the TGF-β pathway remain elusive. Here we demonstrate that mutant p53 differentially regulates subsets of TGF-β target genes by enhanced binding to the MH2 domain in Smad3 upon the integration of ERK signaling, therefore disrupting Smad3/Smad4 complex formation. Silencing Smad2, inhibition of ERK, or introducing a phosphorylation-defective mutation at Ser-392 in p53 abrogates the R175H mutant p53-dependent regulation of these TGF-β target genes. Our study shows a mechanism to reconcile the seemingly contradictory observations that mutant p53 can both attenuate and cooperate with the TGF-β pathway to promote cancer cell malignancy in the same cell type.  相似文献   

17.
Reactivation of mutant p53 in tumours is a promising strategy for cancer therapy. Here we characterise the novel p53 rescue compound P53R3 that restores sequence-specific DNA binding of the endogenously expressed p53(R175H) and p53(R273H) mutants in gel-shift assays. Overexpression of the paradigmatic p53 mutants p53(R175H), p53(R248W) and p53(R273H) in the p53 null glioma cell line LN-308 reveals that P53R3 induces p53-dependent antiproliferative effects with much higher specificity and over a wider range of concentrations than the previously described p53 rescue drug p53 reactivation and induction of massive apoptosis (PRIMA-1). Furthermore, P53R3 enhances recruitment of endogenous p53 to several target promoters in glioma cells bearing mutant (T98G) and wild-type (LNT-229) p53 and induces mRNA expression of numerous p53 target genes in a p53-dependent manner. Interestingly, P53R3 strongly enhances the mRNA, total protein and cell surface expression of the death receptor death receptor 5 (DR5) whereas CD95 and TNF receptor 1 levels are unaffected. Accordingly, P53R3 does not sensitise for CD95 ligand- or tumour necrosis factor alpha-induced cell death, but displays synergy with Apo2L.0 in 9 of 12 glioma cell lines. Both DR5 surface induction and synergy with Apo2L.0 are sensitive to siRNA-mediated downregulation of p53. Thus this new p53 rescue compound may open up novel perspectives for the treatment of cancers currently considered resistant to the therapeutic induction of apoptosis.  相似文献   

18.
MHC recognition by hapten-specific HLA-A2-restricted CD8+ CTL   总被引:1,自引:0,他引:1  
T cell recognition by peptide-specific alphabeta TCRs involves not only recognition of the peptide, but also recognition of multiple molecular features on the surface of the MHC molecule to which the peptide has been bound. We have previously shown that TCRs that are specific for five different peptides presented by HLA-A2 recognize similar molecular features on the surface of the alpha1 and alpha2 helices of the HLA-A2 molecule. We next asked whether these same molecular features of the HLA-A2 molecule would be recognized by hapten-specific HLA-A2-restricted TCRs, given that hapten-specific T cells frequently show reduced MHC dependence/restriction. The results show that a panel of CD8+ CTL that are specific for the hapten DNP bound to two different peptides presented by HLA-A2 do the following: 1) show stringent MHC restriction, and 2) are largely affected by the same mutations on the HLA-A2 molecule that affected recognition by peptide-specific CTL. A small subset of this panel of CD8+ CTL can recognize a mutant HLA-A2 molecule in the absence of hapten. These data suggest that TCR recognition of a divergent repertoire of ligands presented by HLA-A2 is largely dependent upon common structural elements in the central portion of the peptide-binding site.  相似文献   

19.
p53 ubiquitination catalysed by MDM2 (murine double minute clone 2 oncoprotein) provides a biochemical assay to dissect stages in E3-ubiquitin-ligase-catalysed ubiquitination of a conformationally flexible protein. A mutant form of p53 (p53(F270A)) containing a mutation in the second MDM2-docking site in the DNA-binding domain of p53 (F270A) is susceptible to modification of long-lived and high-molecular-mass covalent adducts in vivo. Mutant F270A is hyperubiquitinated in cells as defined by immunoprecipitation and immunoblotting with an anti-ubiquitin antibody. Transfection of His-tagged ubiquitin along with p53(R175H) or p53(F270A) also results in selective hyperubiquitination in cells under conditions where wild-type p53 is refractory to covalent modification. The extent of mutant p53(R175H) or p53(F270A) unfolding in cells as defined by exposure of the DO-12 epitope correlates with the extent of hyperubiquitination, suggesting a link between substrate conformation and E3 ligase function. The p53(F270A:6KR) chimaeric mutant (where 6KR refers to the simultaneous mutation of lysine residues at positions 370, 372, 373, 381, 382 and 386 to arginine) maintains the high-molecular-mass covalent adducts and is modified in an MDM2-dependent manner. Using an in vitro ubiquitination system, mutant p53(F270A) and the p53(F270A:6KR) chimaeric mutant is also subject to hyperubiquitination outwith the C-terminal domain, indicating direct recognition of the mutant p53 conformation by (a) factor(s) in the cell-free ubiquitination system. These data identify an in vitro and in vivo assay with which to dissect how oligomeric protein conformational alterations are linked to substrate ubiquitination in cells. This has implications for understanding the recognition of misfolded proteins during aging and in human diseases such as cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号