首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the glucose-6-phosphate dehydrogenase (G6PD) gene result in red blood cells with increased susceptibility to oxidative damage. Significant haemolysis can be caused by primaquine and other 8-aminoquinoline antimalarials used for the radical treatment of Plasmodium vivax malaria. The distribution and phenotypes of mutations causing G6PD deficiency in the male population of migrants and refugees in a malaria endemic region on the Thailand-Myanmar border were characterized. Blood samples for G6PD fluorescent spot test (FST), G6PD genotyping, and malaria testing were taken from 504 unrelated males of Karen and Burman ethnicities presenting to the outpatient clinics. The overall frequency of G6PD deficiency by the FST was 13.7%. Among the deficient subjects, almost 90% had the Mahidol variant (487G>A) genotype. The remaining subjects had Chinese-4 (392G>T), Viangchan (871G>A), Açores (595A>G), Seattle (844G>C) and Mediterranean (563C>T) variants. Quantification of G6PD activity was performed using a modification of the standard spectrophotometric assay on a subset of 24 samples with Mahidol, Viangchan, Seattle and Chinese-4 mutations; all samples showed a residual enzymatic activity below 10% of normal and were diagnosed correctly by the FST. Further studies are needed to characterise the haemolytic risk of using 8-aminoquinolines in patients with these genotypes.  相似文献   

2.
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked hereditary disease that predisposes red blood cells to oxidative damage. G6PD deficiency is particularly prevalent in historically malaria-endemic areas. Use of primaquine for malaria treatment may result in severe hemolysis in G6PD deficient patients. In this study, we systematically evaluated the prevalence of G6PD deficiency in the Kachin (Jingpo) ethnic group along the China-Myanmar border and determined the underlying G6PD genotypes. We surveyed G6PD deficiency in 1770 adult individuals (671 males and 1099 females) of the Kachin ethnicity using a G6PD fluorescent spot test. The overall prevalence of G6PD deficiency in the study population was 29.6% (523/1770), among which 27.9% and 30.6% were males and females, respectively. From these G6PD deficient samples, 198 unrelated individuals (147 females and 51 males) were selected for genotyping at 11 known G6PD single nucleotide polymorphisms (SNPs) in Southeast Asia (ten in exons and one in intron 11) using a multiplex SNaPshot assay. Mutations with known association to a deficient phenotype were detected in 43.9% (87/198) of cases, intronic and synonymous mutations were detected alone in 34.8% (69/198) cases and no mutation were found in 21.2% (42/198) cases. Five non-synonymous mutations, Mahidol 487G>A, Kaiping 1388G>A, Canton 1376G>T, Chinese 4 392G>T, and Viangchan 871G>A were detected. Of the 87 cases with known deficient mutations, the Mahidol variant was the most common (89.7%; 78/87), followed by the Kaiping (8.0%; 7/87) and the Viangchan (2.2%; 2/87) variants. The Canton and Chinese 4 variants were found in 1.1% of these 87 cases. Among them, two females carried the Mahidol/Viangchan and Mahidol/Kaiping double mutations, respectively. Interestingly, the silent SNPs 1311C>T and IVS11nt93T>C both occurred in the same 95 subjects with frequencies at 56.4% and 23.5% in tested females and males, respectively (P<0.05). It is noteworthy that 24 subjects carrying the Mahidol mutation and two carrying the Kaiping mutation also carried the 1311C>T/IVS11nt93T>C SNPs. Further studies are needed to determine the enzyme levels of the G6PD deficient people and presence of additional G6PD mutations in the study population.  相似文献   

3.
4.
Primaquine and tafenoquine are the only licensed drugs with activity against Plasmodium vivax hypnozoites but cause haemolysis in patients with glucose–6–phosphate dehydrogenase (G6PD) deficiency. Malaria also causes haemolysis, leading to the replacement of older erythrocytes with low G6PD activity by reticulocytes and young erythrocytes with higher activity. Aim of this study was to assess the impact of acute malaria on G6PD activity. Selected patients with uncomplicated malaria were recruited in Bangladesh (n = 87), Indonesia (n = 75), and Ethiopia (n = 173); G6PD activity was measured at the initial presentation with malaria and a median of 176 days later (range 140 to 998) in the absence of malaria. Among selected participants (deficient participants preferentially enrolled in Bangladesh but not at other sites) G6PD activity fell between malaria and follow up by 79.1% (95%CI: 40.4 to 117.8) in 6 participants classified as deficient (<30% activity), 43.7% (95%CI: 34.2 to 53.1) in 39 individuals with intermediate activity (30% to <70%), and by 4.5% (95%CI: 1.4 to 7.6) in 290 G6PD normal (≥70%) participants. In Bangladesh and Indonesia G6PD activity was significantly higher during acute malaria than when the same individuals were retested during follow up (40.9% (95%CI: 33.4–48.1) and 7.4% (95%CI: 0.2 to 14.6) respectively), whereas in Ethiopia G6PD activity was 3.6% (95%CI: -1.0 to -6.1) lower during acute malaria. The change in G6PD activity was apparent in patients presenting with either P. vivax or P. falciparum infection. Overall, 66.7% (4/6) severely deficient participants and 87.2% (34/39) with intermediate deficiency had normal activities when presenting with malaria.These findings suggest that G6PD activity rises significantly and at clinically relevant levels during acute malaria. Prospective case-control studies are warranted to confirm the degree to which the predicted population attributable risks of drug induced haemolysis is lower than would be predicted from cross sectional surveys.  相似文献   

5.

Background

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzymatic disorder of the erythrocytes that affects 400 million people worldwide. We developed a PCR-reverse dot blot (RDB) assay to screen twenty genotypes of seventeen Chinese G6PD mutations and investigate the spectrum of G6PD deficiency mutations in Dongguan District, Guangdong Province, in southern China.

Method

The PCR-RDB assay consists of multiplex PCR amplification of seven fragments in the G6PD target sequence of wild-type and mutant genomic DNA samples followed by hybridization to a test strip containing allele-specific oligonucleotide probes. A total of 16,464 individuals were analyzed by a combination of phenotypic screening and genotypic detection using the PCR-RDB assay and DNA sequence analysis.

Results

The PCR-RDB assay had a detection rate of 98.1%, which was validated by direct sequencing in a blind study with 100% concordance. The G6PD deficiency incidence rate in Dongguan District is 4.08%. Thirty-two genotypes from 469 individuals were found. The two most common variants were c.1376G>T and c.1388G>A, followed by c.95A>G, c.871G>A, c.392G>T, and c.1024 C>T. In addition, two rare mutations (c.703C>A and c.406C>T) were detected by DNA sequencing analysis. In our study, 65 cases harbored the C1311T/IVS polymorphism and 67 cases were homozygote.

Conclusion

The PCR-RDB assay we established is a reliable and effective method for screening G6PD mutations in the Chinese population. Data on the spectrum of mutations in the Dongguan District is beneficial to the clinical diagnosis and prevention of G6PD deficiency.  相似文献   

6.
Safe treatment of Plasmodium vivax requires diagnosis of both the infection and status of erythrocytic glucose-6-phosphate dehydrogenase (G6PD) activity because hypnozoitocidal therapy against relapse requires primaquine, which causes a mild to severe acute hemolytic anemia in G6PD deficient patients. Many national malaria control programs recommend primaquine therapy without G6PD screening but with monitoring due to a broad lack of G6PD deficiency screening capacity. The degree of risk in doing so hinges upon the level of residual G6PD activity among the variants present in any given area. We conducted studies on Sumba Island in eastern Indonesia in order to assess the potential threat posed by primaquine therapy without G6PD screening. We sampled 2,033 residents of three separate districts in western Sumba for quantitative G6PD activity and 104 (5.1%) were phenotypically deficient (<4.6U/gHb; median normal 10U/gHb). The villages were in two distinct ecosystems, coastal and inland. A positive correlation occurred between the prevalence of malaria and G6PD deficiency: 5.9% coastal versus inland 0.2% for malaria (P<0.001), and 6.7% and 3.1% for G6PD deficiency (P<0.001) at coastal and inland sites, respectively. The dominant genotypes of G6PD deficiency were Vanua Lava, Viangchan, and Chatham, accounting for 98.5% of the 70 samples genotyped. Subjects expressing the dominant genotypes all had less than 10% of normal enzyme activities and were thus considered severe variants. Blind administration of anti-relapse primaquine therapy at Sumba would likely impose risk of serious harm.  相似文献   

7.
Plasmodium vivax is the most prevalent of the five species causing malaria in humans. The current available treatment for P. vivax malaria is limited and unsatisfactory due to at least two drawbacks: the undesirable side effects of primaquine (PQ) and drug resistance to chloroquine. Phenylalanine-alanine-PQ (Phe-Ala-PQ) is a PQ prodrug with a more favorable pharmacokinetic profile compared to PQ. The toxicity of this prodrug was evaluated in in vitro assays using a human hepatoma cell line (HepG2), a monkey kidney cell line (BGM), and human red blood cells deficient in the enzyme glucose-6-phosphate-dehydrogenase (G6PD). In addition, in vivo toxicity assays were performed with rats that received multiple doses of Phe-Ala-PQ to evaluate biochemical, hematological, and histopathological parameters. The activity was assessed by the inhibition of the sporogonic cycle using a chicken malaria parasite. Phe-Ala-PQ blocked malaria transmission in Aedes mosquitoes. When compared with PQ, it was less cytotoxic to BGM and HepG2 cells and caused less hemolysis of G6PD-deficient red blood cells at similar concentrations. The prodrug caused less alteration in the biochemical parameters than did PQ. Histopathological analysis of the liver and kidney did show differences between the control and Phe-Ala-PQ-treated groups, but they were not statistically significant. Taken together, the results highlight the prodrug as a novel lead compound candidate for the treatment of P. vivax malaria and as a blocker of malaria transmission.  相似文献   

8.
Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is the most common enzymopathy globally, and deficient individuals may experience severe hemolysis following treatment with 8-aminoquinolines. With increasing evidence of Plasmodium vivax infections throughout sub-Saharan Africa, there is a pressing need for population-level data at on the prevalence of G6PDd. Such evidence-based data will guide the expansion of primaquine and potentially tafenoquine for radical cure of P. vivax infections. This study aimed to quantify G6PDd prevalence in two geographically distinct areas in Sudan, and evaluating the performance of a qualitative CareStart rapid diagnostic test as a point-of-care test. Blood samples were analyzed from 491 unrelated healthy persons in two malaria-endemic sites in eastern and central Sudan. A pre-structured questionnaire was used which included demographic data, risk factors and treatment history. G6PD levels were measured using spectrophotometry (SPINREACT) and first-generation qualitative CareStart rapid tests. G6PD variants (202 G>A; 376 A>G) were determined by PCR/RFLP, with a subset confirmed by Sanger sequencing. The prevalence of G6PDd by spectrophotometry was 5.5% (27/491; at 30% of adjusted male median, AMM); 27.3% (134/491; at 70% of AMM); and 13.1% (64/490) by qualitative CareStart rapid diagnostic test. The first-generation CareStart rapid diagnostic test had an overall sensitivity of 81.5% (95%CI: 61.9 to 93.7) and negative predictive value of 98.8% (97.3 to 99.6). All persons genotyped across both study sites were wild type for the G6PD G202 variant. For G6PD A376G all participants in New Halfa had wild type AA (100%), while in Khartoum the AA polymorphism was found in 90.7%; AG in 2.5%; and GG in 6.8%. Phenotypic G6PD B was detected in 100% of tested participants in New Halfa while in Khartoum, the phenotypes observed were B (96.2%), A (2.8%), and AB (1%). The African A- phenotype was not detected in this study population. Overall, G6PDd prevalence in Sudan is low-to-moderate but highly heterogeneous. Point-of-care testing with the qualitative CareStart rapid diagnostic test demonstrated moderate performance with moderate sensitivity and specificity but high negative predicative value. The two sites harbored primarily the African B phenotype. A country-wide survey is recommended to understand GP6PD deficiencies more comprehensively in Sudan.  相似文献   

9.
BackgroundAcute Plasmodium vivax malaria is associated with haemolysis, bone marrow suppression, reticulocytopenia, and post-treatment reticulocytosis leading to haemoglobin recovery. Little is known how malaria affects glucose-6-phosphate dehydrogenase (G6PD) activity and whether changes in activity when patients present may lead qualitative tests, like the fluorescent spot test (FST), to misdiagnose G6PD deficient (G6PDd) patients as G6PD normal (G6PDn). Giving primaquine or tafenoquine to such patients could result in severe haemolysis.MethodsWe investigated the G6PD genotype, G6PD enzyme activity over time and the baseline FST phenotype in Cambodians with acute P. vivax malaria treated with 3-day dihydroartemisinin piperaquine and weekly primaquine, 0·75 mg/kg x8 doses.ResultsOf 75 recruited patients (males 63), aged 5–63 years (median 24), 15 were G6PDd males (14 Viangchan, 1 Canton), 3 were G6PD Viangchan heterozygous females, and 57 were G6PDn; 6 patients had α/β-thalassaemia and 26 had HbE.Median (range) Day0 G6PD activities were 0·85 U/g Hb (0·10–1·36) and 11·4 U/g Hb (6·67–16·78) in G6PDd and G6PDn patients, respectively, rising significantly to 1·45 (0·36–5·54, p<0.01) and 12·0 (8·1–17·4, p = 0.04) U/g Hb on Day7, then falling to ~Day0 values by Day56. Day0 G6PD activity did not correlate (p = 0.28) with the Day0 reticulocyte counts but both correlated over time. The FST diagnosed correctly 17/18 G6PDd patients, misclassifying one heterozygous female as G6PDn.ConclusionsIn Cambodia, acute P. vivax malaria did not elevate G6PD activities in our small sample of G6PDd patients to levels that would result in a false normal qualitative test. Low G6PDd enzyme activity at disease presentation increases upon parasite clearance, parallel to reticulocytosis. More work is needed in G6PDd heterozygous females to ascertain the effect of P. vivax on their G6PD activities.Trial registrationThe trial was registered (ACTRN12613000003774) with the Australia New Zealand Clinical trials (https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=363399&isReview=true).  相似文献   

10.
BackgroundGlucose-6-phosphate dehydrogenase (G6PD) deficiency greatly hinders Plasmodium vivax malaria radical cure and further elimination due to 8-aminoquinolines-associated hemolysis. Although the deleterious health effects of primaquine in G6PD deficient individuals have been known for over 50 years, G6PD testing is not routinely performed before primaquine treatment in most P. vivax endemic areas.Method/Principal findingsThe qualitative CareStart G6PD screening test was implemented in 12 malaria treatment units (MTUs) in the municipality of Rio Preto da Eva, Western Brazilian Amazon, a malaria endemic area, between February 2019 and early January 2020. Training materials were developed and validated; evaluations were conducted on the effectiveness of training health care professionals (HCPs) to perform the test, the interpretation and reliability of routine testing performed by HCPs, and perceptions of HCPs and patients. Most HCPs were unaware of G6PD deficiency and primaquine-related adverse effects. Most of 110 HCPs trained (86/110, 78%) were able to correctly perform the G6PD test after a single 4-hour training session. The test performed by HCPs during implementation showed 100.0% (4/4) sensitivity and 68.1% (62/91) specificity in identifying G6PD deficient patients as compared to a point-of-care quantitative test (Standard G6PD).Conclusions/SignificanceG6PD screening using the qualitative CareStart G6PD test performed by HCPs in MTUs of an endemic area showed high sensitivity and concerning low specificity. The amount of false G6PD deficiency detected led to substantial loss of opportunities for radical cure.  相似文献   

11.
Hearing loss (HL) is one of the most common sensorineural disorders and several dozen genes contribute to its pathogenesis. Establishing a genetic diagnosis of HL is of great importance for clinical evaluation of deaf patients and for estimating recurrence risks for their families. Efforts to identify genes responsible for HL have been challenged by high genetic heterogeneity and different ethnic-specific prevalence of inherited deafness. Here we present the utility of whole exome sequencing (WES) for identifying candidate causal variants for previously unexplained nonsyndromic HL of seven patients from four unrelated Altaian families (the Altai Republic, South Siberia). The WES analysis revealed homozygous missense mutations in three genes associated with HL. Mutation c.2168A>G (SLC26A4) was found in one family, a novel mutation c.1111G>C (OTOF) was revealed in another family, and mutation c.5254G>A (RAI1) was found in two families. Sanger sequencing was applied for screening of identified variants in an ethnically diverse cohort of other patients with HL (n = 116) and in Altaian controls (n = 120). Identified variants were found only in patients of Altaian ethnicity (n = 93). Several lines of evidences support the association of homozygosity for discovered variants c.5254G>A (RAI1), c.1111C>G (OTOF), and c.2168A>G (SLC26A4) with HL in Altaian patients. Local prevalence of identified variants implies possible founder effect in significant number of HL cases in indigenous population of the Altai region. Notably, this is the first reported instance of patients with RAI1 missense mutation whose HL is not accompanied by specific traits typical for Smith-Magenis syndrome. Presumed association of RAI1 gene variant c.5254G>A with isolated HL needs to be proved by further experimental studies.  相似文献   

12.
BackgroundGlucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzyme deficiency, prevalent in many malaria-endemic countries. G6PD-deficient individuals are susceptible to hemolysis during oxidative stress, which can occur from exposure to certain medications, including 8-aminoquinolines used to treat Plasmodium vivax malaria. Accordingly, access to point-of-care (POC) G6PD testing in Brazil is critical for safe treatment of P. vivax malaria.Methodology/Principal findingsThis study evaluated the performance of the semi-quantitative, POC STANDARD G6PD Test (SD Biosensor, Republic of Korea). Participants were recruited at clinics and through an enriched sample in Manaus and Porto Velho, Brazil. G6PD and hemoglobin measurements were obtained from capillary samples at the POC using the STANDARD and HemoCue 201+ (HemoCue AB, Sweden) tests. A thick blood slide was prepared for malaria microscopy. At the laboratories, the STANDARD and HemoCue tests were repeated on venous samples and a quantitative spectrophotometric G6PD reference assay was performed (Pointe Scientific, Canton, MI). G6PD was also assessed by fluorescent spot test. In Manaus, a complete blood count was performed.Samples were analyzed from 1,736 participants. In comparison to spectrophotometry, the STANDARD G6PD Test performed equivalently in determining G6PD status in venous and capillary specimens under varied operating temperatures. Using the manufacturer-recommended reference value thresholds, the test’s sensitivity at the <30% threshold on both specimen types was 100% (95% confidence interval [CI] venous 93.6%–100.0%; capillary 93.8%–100.0%). Specificity was 98.6% on venous specimens (95% CI 97.9%–99.1%) and 97.8% on capillary (95% CI 97.0%–98.5%). At the 70% threshold, the test’s sensitivity was 96.9% on venous specimens (95% CI 83.8%–99.9%) and 94.3% on capillary (95% CI 80.8%–99.3%). Specificity was 96.5% (95% CI 95.0%–97.6%) and 92.3% (95% CI 90.3%–94.0%) on venous and capillary specimens, respectively.Conclusion/SignificanceThe STANDARD G6PD Test is a promising tool to aid in POC detection of G6PD deficiency in Brazil.Trial registrationThis study was registered with ClinicalTrials.gov (identifier: NCT04033640).  相似文献   

13.
BackgroundPlasmodium vivax occurs as a latent infection of liver and a patent infection of red blood cells. Radical cure requires both blood schizontocidal and hypnozoitocidal chemotherapies. The hypnozoitocidal therapies available are primaquine and tafenoquine, 8-aminoquinoline drugs that can provoke threatening acute hemolytic anemia in patients having an X-linked G6PD-deficiency. Heterozygous females may screen as G6PD-normal prior to radical cure and go on to experience hemolytic crisis.Methods & findingsThis study examined G6PD phenotypes in 1928 female subjects living in malarious Sumba Island in eastern Indonesia to ascertain the prevalence of females vulnerable to diagnostic misclassification as G6PD-normal. All 367 (19%) females having <80% G6PD normal activity were genotyped. Among those, 103 (28%) were G6PD wild type, 251 (68·4%) were heterozygous, three (0·8%) were compound heterozygotes, and ten (2·7%) were homozygous deficient. The variants Vanua Lava, Viangchan, Coimbra, Chatham, and Kaiping occurred among them. Below the 70% of normal G6PD activity threshold, just 18 (8%) were G6PD-normal and 214 (92%) were G6PD-deficient. Among the 31 females with <30% G6PD normal activity were all ten homozygotes, all three compound heterozygotes, and just 18 were heterozygotes (7% of those).ConclusionsIn this population, most G6PD heterozygosity in females occurred between 30% and 70% of normal (69·3%; 183/264). The prevalence of females at risk of G6PD misclassification as normal by qualitative screening was 9·5% (183/1928). Qualitative G6PD screening prior to 8-aminoquinoline therapies against P. vivax may leave one in ten females at risk of hemolytic crisis, which may be remedied by point-of-care quantitative tests.  相似文献   

14.

Objectives

The main aim of this study was to investigate the effect of CYP2B6 gene polymorphisms on efavirenz (EFV) plasma concentrations in Han Chinese patients with human immunodeficiency virus (HIV) infection.

Methods

In total, 322 patients were recruited for study. EFV plasma concentrations at steady-state were determined using high-performance liquid chromatography. Genotyping for seven single nucleotide polymorphisms (SNPs), including 171+967C>A, 171+3212C>T, 171+4335T>C, 516G>T, 785A>G, 1295-913G>A, and *1355A>G of CYP2B6, was performed using ligase detection reaction (LDR). SPSS 18.0 and Haploview 4.2 were applied for statistical analyses.

Results

The average EFV concentration of patients was 2.35±2.09 μg/mL. Overall, 22% patients displayed EFV concentrations out of the therapeutic range of 1–4 μg/mL (13.1% < 1 μg/mL, 9.3% > 4 μg/mL). We observed significant association of 171+967C>A, 171+4335T>C, 516G>T, 785A>G and *1355A>G with high plasma EFV levels (p<.01). The predictive accuracy values of 171+4335CC, 516TT and 785GG for EFV concentrations > 4 μg/mL were 56.7%, 56.7% and 60%, respectively. We observed strong linkage disequilibrium for 171+967C>A, 171+4335T>C, 516G>T and 785A>G, resulting in five haplotypes. The frequencies of the five haplotypes (high to low) were as follows: CCTG (0.328), ACTG (0.280), ACCT (0.189), ATTG (0.186) and ACCG (0.017). The frequency of CCTG (0.524) in patients with EFV plasma concentrations < 1 μg/mL was significantly higher than that in other patient groups, while that of ACCT (0.733) was significantly higher in patients with EFV concentrations > 4 μg/mL, relative to other patient groups. Average EFV concentrations of patients carrying ACTG (1.78 μg/mL), ACCT (7.50 μg/mL), and ATTG (1.92 μg/mL) haplotypes were markedly higher than those of patients carrying the CCTG haplotype. The predictive accuracy of ACCT for EFV > 4 μg/mL was 81%.

Conclusions

Chinese patients administered standard doses of EFV require therapeutic drug monitoring or personalized medication management. Based on the current findings, we propose that 171+4335T>C, 516G>T, 785A>G and haplotype ACCT may be effectively used as genomic markers for EFV, which should aid in improving the efficacy of EFV-containing treatments and reduce the incidence of adverse reactions.  相似文献   

15.
The promoter polymorphisms of drug-metabolizing genes can lead to interindividual differences in gene expression, which may result in adverse drug effects and therapeutic failure. Based on the database of CYP2D6 gene polymorphisms in the Chinese Han population established by our group, we functionally characterized the single nucleotide polymorphisms (SNPs) of the promoter region and corresponding haplotypes in this population. Using site-directed mutagenesis, all the five SNPs identified and ten haplotypes with a frequency equal to or greater than 0.01 in the population were constructed on a luciferase reporter system. Dual luciferase reporter systems were used to analyze regulatory activity. The activity produced by Haplo3(−2183G>A, −1775A>G, −1589G>C, −1431C>T, −1000G>A, −678A>G), Haplo8(−2065G>A, −2058T>G, −1775A>G, −1589G>C, −1235G>A, −678A>G) and MU3(−498C>A) was 0.7−, 0.7−, 1.2− times respectively compared with the wild type in human hepatoma cell lines(p<0.05). These findings might be useful for optimizing pharmacotherapy and the design of personalized medicine.  相似文献   

16.
Fanconi anemia (FA), a rare heterogeneous genetic disorder, is known to be associated with 19 genes and a spectrum of clinical features. We studied FANCA molecular changes in 34 unrelated and 2 siblings of Indian patients with FA and have identified 26 different molecular changes of FANCA gene, of which 8 were novel mutations (a small deletion c.2500delC, 4 non-sense mutations c.2182C>T, c.2630C>G, c.3677C>G, c.3189G>A; and 3 missense mutations; c.1273G>C, c.3679 G>C, and c.3992 T>C). Among these only 16 patients could be assigned FA-A complementation group, because we could not confirm single exon deletions detected by MLPA or cDNA amplification by secondary confirmation method and due to presence of heterozygous non-pathogenic variations or heterozygous pathogenic mutations. An effective molecular screening strategy should be developed for confirmation of these mutations and determining the breakpoints for single exon deletions.  相似文献   

17.

Background

Peroxisome proliferator-activated receptor delta (PPARD) is nuclear hormone receptor involved in colorectal cancer (CRC) differentiation and progression. The purpose of this study was to determine prevalence and spectrum of variants in the PPARD gene in CRC, and their contribution to clinicopathological endpoints.

Methods and Findings

Direct sequencing of the PPARD gene was performed in 303 primary tumors, in blood samples from 50 patients with ≥3 affected first-degree relatives, 50 patients with 2 affected first-degree relatives, 50 sporadic patients, 360 healthy controls, and in 6 colon cancer cell lines. Mutation analysis revealed 22 different transversions, 7 of them were novel. Three of all variants were somatic (c.548A>G, p.Y183C, c.425-9C>T, and c.628-16G>A). Two missense mutations (p.Y183C and p.R258Q) were pathogenic using in silico predictive program. Five recurrent variants were detected in/adjacent to the exons 4 (c.1-87T>C, c.1-67G>A, c.130+3G>A, and c.1-101-8C>T) and exon 7 (c.489T>C). Variant c.489C/C detected in tumors was correlated to worse differentiation (P = 0.0397).

Conclusions

We found 7 novel variants among 22 inherited or acquired PPARD variants. Somatic and/or missense variants detected in CRC patients are rare but indicate the clinical importance of the PPARD gene.  相似文献   

18.
Malaria continues to be one of the most crucial infectious burdens in endemic areas worldwide, as well as for travelers visiting malaria transmission regions. It has been reported that 8-aminoquinolines are effective against the Plasmodium species, particularly primaquine, for anti-hypnozoite therapy in P. vivax malaria. However, primaquine causes acute hemolytic anemia in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Therefore, G6PD deficiency testing should precede hypnozoite elimination with 8-aminoquinoline. Several point-of-care devices have been developed to detect G6PD deficiency. The aim of the present study was to evaluate the performance of a novel, quantitative G6PD diagnostics based on a metagenomic blue fluorescent protein (mBFP). We comparatively evaluated the sensitivity and specificity of the G6PD diagnostic modality with standard methods using 120 human whole blood samples. The G6PD deficiency was spectrophotometrically confirmed. The performance of the G6PD quantitative test kit was compared with that of a licensed control medical device, the G6PD strip. The G6PD quantitative test kit had a sensitivity of 95% (95% confidence interval (CI): 89.3–100%) and a specificity of 100% (95% CI: 94.3–100%). This study shows that the novel diagnostic G6PD quantitative test kit could be a cost-effective and time-efficient, and universally mandated screening tool for G6PD deficiency.  相似文献   

19.
20.
Acephalic spermatozoa syndrome is a rare and severe form of teratozoospermia characterized by a predominance of headless spermatozoa in the ejaculate. Family clustering and consanguinity suggest a genetic origin; however, causative mutations have yet to be identified. We performed whole-exome sequencing in two unrelated infertile men and subsequent variant filtering identified one homozygous (c.824C>T [p.Thr275Met]) and one compound heterozygous (c.1006C>T [p.Arg356Cys] and c.485T>A [p.Met162Lys]) SUN5 (also named TSARG4) variants. Sanger sequencing of SUN5 in 15 additional unrelated infertile men revealed four compound heterozygous (c.381delA [p.Val128Serfs7] and c.824C>T [p.Thr275Met]; c.381delA [p.Val128Serfs7] and c.781G>A [p.Val261Met]; c.216G>A [p.Trp72] and c.1043A>T [p.Asn348Ile]; c.425+1G>A/c.1043A>T [p.Asn348Ile]) and two homozygous (c.851C>G [p.Ser284]; c.350G>A [p.Gly114Arg]) variants in six individuals. These 10 SUN5 variants were found in 8 of 17 unrelated men, explaining the genetic defect in 47.06% of the affected individuals in our cohort. These variants were absent in 100 fertile population-matched control individuals. SUN5 variants lead to absent, significantly reduced, or truncated SUN5, and certain variants altered SUN5 distribution in the head-tail junction of the sperm. In summary, these results demonstrate that biallelic SUN5 mutations cause male infertility due to autosomal-recessive acephalic spermatozoa syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号