共查询到20条相似文献,搜索用时 15 毫秒
1.
Gong Ho Han Seong Jun Kim WanKyu Ko Daye Lee InBo Han Seung Hun Sheen Je Beom Hong Seil Sohn 《Cell proliferation》2021,54(6)
ObjectivesIn this study, we study the transplantation of tauroursodeoxycholic acid (TUDCA)‐induced M2‐phenotype (M2) macrophages and their ability to promote anti‐neuroinflammatory effects and functional recovery in a spinal cord injury (SCI) model.MethodsTo this end, compared to the granulocyte‐macrophage colony‐stimulating factor (GM‐CSF), we evaluated whether TUDCA effectively differentiates bone marrow–derived macrophages (BMDMs) into M2 macrophages.ResultsThe M2 expression markers in the TUDCA‐treated BMDM group were increased more than those in the GM‐CSF‐treated BMDM group. After the SCI and transplantation steps, pro‐inflammatory cytokine levels and the mitogen‐activated protein kinase (MAPK) pathway were significantly decreased in the TUDCA‐induced M2 group more than they were in the GM‐CSF‐induced M1 group and in the TUDCA group. Moreover, the TUDCA‐induced M2 group showed significantly enhanced tissue volumes and improved motor functions compared to the GM‐CSF‐induced M1 group and the TUDCA group. In addition, biotinylated dextran amine (BDA)–labelled corticospinal tract (CST) axons and neuronal nuclei marker (NeuN) levels were increased in the TUDCA‐induced M2 group more than those in the GM‐CSF‐induced M1 group and the TUDCA group.ConclusionsThis study demonstrates that the transplantation of TUDCA‐induced M2 macrophages promotes an anti‐neuroinflammatory effect and motor function recovery in SCI. Therefore, we suggest that the transplantation of TUDCA‐induced M2 macrophages represents a possible alternative cell therapy for SCI. 相似文献
2.
Osteosarcoma (OS) is one of the most common metastatic bone cancers, which results in significant morbidity and mortality. The important role of long non‐coding RNAs (lncRNAs) in the biological processes of OS has been demonstrated through several studies. In the current study, we evaluated the role of the lncRNA, LINC01128, in OS. We analysed the expression of LINC01128 in three OS gene expression omnibus (GEO) data sets , GSE21257 and GSE36001. The expression of LINC01128 in OS tissues and matched non‐tumour tissues obtained from 50 OS patients was detected using qRT‐PCR. The association between LINC01128 expression and overall survival of OS patients was evaluated using the Kaplan‐Meier method. The effects of LINC01128 knockdown and overexpression were evaluated through in vitro and in vivo assays. The LINC01128/miR‐299‐3p/ MMP2 axis was verified using dual‐luciferase reporter assay and qRT‐PCR assays. GEO data sets analysis revealed that the expression of LINC01128 was increased in OS. Elevated LINC01128 expression was accompanied by shorter overall survival in OS patients. Functional studies revealed that LINC01128 knockdown reduced the proliferation, migration and invasion of OS cells both in vitro and in vivo. Mechanistically, LINC01128 sponged miR‐299‐3p to increase MMP2 expression. Rescue assays determined the role of the LINC01128/miR‐299‐3p/MMP2 axis in the proliferation, migration and invasion of OS cells. Additionally, the Wnt/β‐catenin signalling pathway was activated by LINC01128 and MMP2 in OS cell lines. In summary, this study demonstrates that LINC01128 facilitates OS by functioning as a sponge of miR‐299‐3p, thus promoting MMP2 expression and activating the Wnt/β‐catenin signalling pathway. GSE42352相似文献
3.
4.
Xiaowei Fu Le Hong Zhengjiang Yang Yi Tu Wanpeng Xin Ming Zha Shuju Tu Gen Sun Yong Li Weidong Xiao 《Journal of cellular and molecular medicine》2020,24(22):13020
Although miR‐148a‐3p has been reported to function as a tumour suppressor in various cancers, the molecular mechanism of miR‐148a‐3p in regulating epithelial‐to‐mesenchymal transition (EMT) and stemness properties of pancreatic cancer (PC) cells remains to be elucidated. In the present study, we demonstrated that miR‐148a‐3p expression was remarkably down‐regulated in PC tissues and cell lines. Moreover, low expression of miR‐148a‐3p was associated with poorer overall survival (OS) in patients with PC. In vitro, gain‐of‐function and loss‐of‐function experiments showed that miR‐148a‐3p suppressed EMT and stemness properties as well as the proliferation, migration and invasion of PC cells. A dual‐luciferase reporter assay demonstrated that Wnt1 was a direct target of miR‐148a‐3p, and its expression was inversely associated with miR‐148a‐3p in PC tissues. Furthermore, miR‐148a‐3p suppressed the Wnt/β‐catenin pathway via down‐regulation of Wnt1. The effects of ectopic miR‐148a‐3p were rescued by Wnt1 overexpression. These biological functions of miR‐148a‐3p in PC were also confirmed in a nude mouse xenograft model. Taken together, these findings suggest that miR‐148a‐3p suppresses PC cell proliferation, invasion, EMT and stemness properties via inhibiting Wnt1‐mediated Wnt/β‐catenin pathway and could be a potential prognostic biomarker as well as a therapeutic target in PC. 相似文献
5.
During cancer progression, bone marrow derived myeloid cells, including immature myeloid cells and macrophages, progressively accumulate at the primary tumour site where they contribute to the establishment of a tumour promoting microenvironment. A marked infiltration of macrophages into the stromal compartment and the generation of a desmoplastic stromal reaction is a particular characteristic of pancreatic ductal adenocarcinoma (PDA) and is thought to play a key role in disease progression and its response to therapy. Tumour associated macrophages (TAMs) foster PDA tumour progression by promoting angiogenesis, metastasis, and by suppressing an anti-tumourigenic immune response. Recent work also suggests that TAMs contribute to resistance to chemotherapy and to the emergence of cancer stem-like cells. Here we will review the current understanding of the biology and the pro-tumourigenic functions of TAMs in cancer and specifically in PDA, and highlight potential therapeutic strategies to target TAMs and to improve current therapies for pancreatic cancer. [BMB Reports 2013; 46(3): 131-138] 相似文献
6.
7.
Jaehoon Lee Sangkyu Park Naeun Oh Jaehyun Park Mijin Kwon Jeongmin Seo Sangho Roh 《Cell proliferation》2021,54(6)
ObjectivesWhether periodic oral intake of postbiotics positively affects weight regulation and prevents obesity‐associated diseases in vivo is unclear. This study evaluated the action mechanism of Lactobacillus plantarum L‐14 (KTCT13497BP) extract and the effects of its periodic oral intake in a high‐fat‐diet (HFD) mouse model.Materials and methodsMouse pre‐adipocyte 3T3‐L1 cells and human bone marrow mesenchymal stem cells (hBM‐MSC) were treated with L‐14 extract every 2 days during adipogenic differentiation, and the mechanism underlying anti‐adipogenic effects was analysed at cellular and molecular levels. L‐14 extract was orally administrated to HFD‐feeding C57BL/6J mice every 2 days for 7 weeks. White adipose tissue was collected and weighed, and liver and blood serum were analysed. The anti‐adipogenic mechanism of exopolysaccharide (EPS) isolated from L‐14 extract was also analysed using Toll‐like receptor 2 (TLR2) inhibitor C29.ResultsL‐14 extract inhibited 3T3‐L1 and hBM‐MSC differentiation into mature adipocytes by upregulating AMPK signalling pathway in the early stage of adipogenic differentiation. The weight of the HFD + L‐14 group (31.51 ± 1.96 g) was significantly different from that of the HFD group (35.14 ± 3.18 g). L‐14 extract also significantly decreased the serum triacylglycerol/high‐density lipoprotein cholesterol ratio (an insulin resistance marker) and steatohepatitis. In addition, EPS activated the AMPK signalling pathway by interacting with TLR2, consequently inhibiting adipogenesis.ConclusionsEPS from L‐14 extract inhibits adipogenesis via TLR2 and AMPK signalling pathways, and oral intake of L‐14 extract improves obesity and obesity‐associated diseases in vivo. Therefore, EPS can be used to prevent and treat obesity and metabolic disorders. 相似文献
8.
9.
Bolong Yi Hao Li Heng Cai Xin Lou Mingjun Yu Zhen Li 《Journal of cellular and molecular medicine》2022,26(2):475
At present, growing evidence indicates that long non‐coding RNAs (lncRNAs) participate in the progression of glioma. The function of LOXL1‐AS1 in vasculogenic mimicry (VM) in glioma remains unclear. First, the expressions of TIAR, the lncRNA LOXL1‐AS1, miR‐374b‐5p and MMP14 were examined by qRT‐PCR and Western blot in both, glioma tissues and glioma cell lines. Proliferation, migration, invasion and tube formation assays were conducted to evaluate the roles of TIAR, LOXL1‐AS1, miR‐374b‐5p and MMP14 in malignant cellular behaviours in glioma cells. A nude mouse xenograft model and dual staining for CD34 and PAS were used to assess whether VM was affected by TIAR, LOXL1‐AS1 or miR‐374b‐5p in vivo. In this study, low levels of TIAR and high levels of LOXL1‐AS1 were found in glioma cells and tissues. TIAR downregulated the expression of LOXL1‐AS1 by destabilizing it. LOXL1‐AS1 acted like a miRNA sponge towards miR‐374b‐5p so that downregulation of the former greatly inhibited cell proliferation, migration, invasion and VM. Additionally, miR‐374b‐5p overexpression repressed malignant biological behaviours and VM in glioma by modifying MMP14. In summary, we demonstrated that TIAR combined with LOXL1‐AS1 modulates VM in glioma via the miR‐374b‐5p/MMP14 axis, revealing novel targets for glioma therapy. 相似文献
10.
ObjectivesZFP91, an E3 ligase, has been reported to possess cancer‐promoting functions. This study aimed to elucidate the exact role of ZFP91 in tumour progression of pancreatic cancer and underlying mechanisms.Materials and MethodsWe analysed the correlation between ZFP91 expression and pancreatic cancer through TCGA and GEO data sets. Growth curve, colony formation, wound healing and transwell invasion assays were conducted to evaluate proliferation, migration and invasion of lentivirus transfected pancreatic cancer cells. GSEA and Western blot analysis were performed to validate the regulatory effect of ZFP91 on β‐catenin. Drug response curve and orthotopic implantation model reflected the sensitivity of chemotherapies.ResultsZFP91 overexpression is prevalent in pancreatic cancer and negatively correlated with overall survival. ZFP91 knock‐down attenuated proliferation, migration and invasion of pancreatic cancer cells. β‐catenin was a downstream gene of ZFP91, and its agonist could reverse the phenotype. ZFP91 promoted EMT and chemoresistance in pancreatic cancer.ConclusionsWe demonstrated that ZFP91 promoted pancreatic cancer proliferation, migration and invasion through activating β‐catenin signalling. EMT and chemoresistance were also regulated by ZFP91. ZFP91 might be a potential therapeutic target for pancreatic cancer. 相似文献
11.
12.
Renuka KandhayaPillai Xiaomeng Yang Tamar Tchkonia George M. Martin James L. Kirkland Junko Oshima 《Aging cell》2022,21(6)
Older age and underlying conditions such as diabetes/obesity or immunosuppression are leading host risk factors for developing severe complications from COVID‐19 infection. The pathogenesis of COVID‐19‐related cytokine storm, tissue damage, and fibrosis may be interconnected with fundamental aging processes, including dysregulated immune responses and cellular senescence. Here, we examined effects of key cytokines linked to cellular senescence on expression of SARS‐CoV‐2 viral entry receptors. We found exposure of human umbilical vein endothelial cells (HUVECs) to the inflammatory cytokines, TNF‐α + IFN‐γ or a cocktail of TNF‐α + IFN‐γ + IL‐6, increased expression of ACE2/DPP4, accentuated the pro‐inflammatory senescence‐associated secretory phenotype (SASP), and decreased cellular proliferative capacity, consistent with progression towards a cellular senescence‐like state. IL‐6 by itself failed to induce substantial effects on viral entry receptors or SASP‐related genes, while synergy between TNF‐α and IFN‐γ initiated a positive feedback loop via hyper‐activation of the JAK/STAT1 pathway, causing SASP amplification. Breaking the interactive loop between senescence and cytokine secretion with JAK inhibitor ruxolitinib or antiviral drug remdesivir prevented hyper‐inflammation, normalized SARS‐CoV‐2 entry receptor expression, and restored HUVECs proliferative capacity. This loop appears to underlie cytokine‐mediated viral entry receptor activation and links with senescence and hyper‐inflammation. 相似文献
13.
Lingling Wang Lujing Wu Zhouting Zhu Qiong Zhang Wanyu Li Gwendolyn Michelle Gonzalez Yinsheng Wang Tariq M Rana 《The EMBO journal》2023,42(2)
Adenosine N6‐methylation (m6A) and N6,2′‐O‐dimethylation (m6Am) are regulatory modifications of eukaryotic mRNAs. m6Am formation is catalyzed by the methyl transferase phosphorylated CTD‐interacting factor 1 (PCIF1); however, the pathophysiological functions of this RNA modification and PCIF1 in cancers are unclear. Here, we show that PCIF1 expression is upregulated in colorectal cancer (CRC) and negatively correlates with patient survival. CRISPR/Cas9‐mediated depletion of PCIF1 in human CRC cells leads to loss of cell migration, invasion, and colony formation in vitro and loss of tumor growth in athymic mice. Pcif1 knockout in murine CRC cells inhibits tumor growth in immunocompetent mice and enhances the effects of anti‐PD‐1 antibody treatment by decreasing intratumoral TGF‐β levels and increasing intratumoral IFN‐γ, TNF‐α levels, and tumor‐infiltrating natural killer cells. We further show that PCIF1 modulates CRC growth and response to anti‐PD‐1 in a context‐dependent mechanism with PCIF1 directly targeting FOS, IFITM3, and STAT1 via m6Am modifications. PCIF1 stabilizes FOS mRNA, which in turn leads to FOS‐dependent TGF‐β regulation and tumor growth. While during immunotherapy, Pcif1‐Fos‐TGF‐β, as well as Pcif1‐Stat1/Ifitm3‐IFN‐γ axes, contributes to the resistance of anti‐PD‐1 therapy. Collectively, our findings reveal a role of PCIF1 in promoting CRC tumorigenesis and resistance to anti‐PD‐1 therapy, supporting that the combination of PCIF1 inhibition with anti‐PD‐1 treatment is a potential therapeutic strategy to enhance CRC response to immunotherapy. Finally, we developed a lipid nanoparticles (LNPs) and chemically modified small interfering RNAs (CMsiRNAs)‐based strategy to silence PCIF1 in vivo and found that this treatment significantly reduced tumor growth in mice. Our results therefore provide a proof‐of‐concept for tumor growth suppression using LNP‐CMsiRNA to silence target genes in cancer. 相似文献
14.
Marta Coscia Elena Quaglino Manuela Iezzi Claudia Curcio Francesca Pantaleoni Chiara Riganti Ingunn Holen Hannu Mönkkönen Mario Boccadoro Guido Forni Piero Musiani Amalia Bosia Federica Cavallo Massimo Massaia 《Journal of cellular and molecular medicine》2010,14(12):2803-2815
It is unknown whether zoledronic acid (ZA) at clinically relevant doses is active against tumours not located in bone. Mice transgenic for the activated ErbB‐2 oncogene were treated with a cumulative number of doses equivalent to that recommended in human beings. A significant increase in tumour‐free and overall survival was observed in mice treated with ZA. At clinically compatible concentrations, ZA modulated the mevalonate pathway and affected protein prenylation in both tumour cells and macrophages. A marked reduction in the number of tumour‐associated macrophages was paralleled by a significant decrease in tumour vascularization. The local production of vascular endothelial growth factor and interleukin‐10 was drastically down‐regulated in favour of interferon‐γ production. Peritoneal macrophages and tumour‐associated macrophages of ZA‐treated mice recovered a full M1 antitumoral phenotype, as shown by nuclear translocation of nuclear factor kB, inducible nitric oxide synthase expression and nitric oxide production. These data indicate that clinically achievable doses of ZA inhibit spontaneous mammary cancerogenesis by targeting the local microenvironment, as shown by a decreased tumour vascularization, a reduced number of tumour‐associated macrophages and their reverted polarization from M2 to M1 phenotype. 相似文献
15.
Inês BoalCarvalho Bryl MazelSanchez Filo Silva Laure Garnier Soner Yildiz Joao PPL Bonifacio Chengyue Niu Nathalia Williams Patrice Francois Nicolaus Schwerk Jennifer Schning Julia Carlens Dorothee Viemann Stephanie Hugues Mirco Schmolke 《EMBO reports》2020,21(12)
Pyroptosis is a fulminant form of macrophage cell death, contributing to release of pro‐inflammatory cytokines. In humans, it depends on caspase 1/4‐activation of gasdermin D and is characterized by the release of cytoplasmic content. Pathogens apply strategies to avoid or antagonize this host response. We demonstrate here that a small accessory protein (PB1‐F2) of contemporary H5N1 and H3N2 influenza A viruses (IAV) curtails fulminant cell death of infected human macrophages. Infection of macrophages with a PB1‐F2‐deficient mutant of a contemporary IAV resulted in higher levels of caspase‐1 activation, cleavage of gasdermin D, and release of LDH and IL‐1β. Mechanistically, PB1‐F2 limits transition of NLRP3 from its auto‐repressed and closed confirmation into its active state. Consequently, interaction of a recently identified licensing kinase NEK7 with NLRP3 is diminished, which is required to initiate inflammasome assembly. 相似文献
16.
Huaixiang Zhou Xiaoge Hu Na Li Guangyan Li Xiaotian Sun Feimin Ge Jiahong Jiang Jingchun Yao Dongsheng Huang Liu Yang 《Journal of cellular and molecular medicine》2020,24(23):13715
Although most gastrointestinal tumours are sensitive to 5‐fluorouracil (5FU), drug resistance is commonly occurred after 5FU therapy in gastric cancer (GC). Loganetin is the primary active compound in Cornus officinali. However, the synergetic effects of loganetin and 5FU on GC remain unknown. Here, we investigated the synergetic effects and the underlying mechanism of loganetin and 5FU on proliferation, stem‐like properties, migration, and invasion of GC both in vitro and in vivo. We found that loganetin alone inhibited the proliferation, stem‐like properties, migration and invasion of GC cells in vitro. Importantly, the loganetin remarkably enhanced the anti‐cancer effect of 5FU on GC cells and the Wnt/β‐catenin pathway might be involved in this process. Animal experiments further confirmed the synergistic effects of 5FU and loganetin on inhibiting cell growth and metastasis of GC. These results suggested that loganetin could synergistically increase the effect of 5FU against GC, which sheds light on effective combinational drug strategies for GC treatment. 相似文献
17.
Ricardo I. MartínezZamudio Hannah K. Dewald Themistoklis Vasilopoulos Lisa GittensWilliams Patricia FitzgeraldBocarsly Utz Herbig 《Aging cell》2021,20(5)
Aging leads to a progressive functional decline of the immune system, rendering the elderly increasingly susceptible to disease and infection. The degree to which immune cell senescence contributes to this decline remains unclear, however, since markers that label immune cells with classical features of cellular senescence accurately and comprehensively have not been identified. Using a second‐generation fluorogenic substrate for β‐galactosidase and multi‐parameter flow cytometry, we demonstrate here that peripheral blood mononuclear cells (PBMCs) isolated from healthy humans increasingly display cells with high senescence‐associated β‐galactosidase (SA‐βGal) activity with advancing donor age. The greatest age‐associated increases were observed in CD8+ T‐cell populations, in which the fraction of cells with high SA‐βGal activity reached average levels of 64% in donors in their 60s. CD8+ T cells with high SA‐βGal activity, but not those with low SA‐βGal activity, were found to exhibit features of telomere dysfunction‐induced senescence and p16‐mediated senescence, were impaired in their ability to proliferate, developed in various T‐cell differentiation states, and had a gene expression signature consistent with the senescence state previously observed in human fibroblasts. Based on these results, we propose that senescent CD8+ T cells with classical features of cellular senescence accumulate to levels that are significantly higher than previously reported and additionally provide a simple yet robust method for the isolation and characterization of senescent CD8+ T cells with predictive potential for biological age. 相似文献
18.
Macrophage polarization contributes to the initiation and perpetuation of systemic lupus erythematosus (SLE). Our previous study demonstrated that M2b polarized macrophages induced by activated lymphocyte-derived DNA (ALD-DNA) have a crucial function in the initiation and progress of SLE disease. Accumulated data suggest that microRNAs (miRNAs) serve as critical regulators to control macrophage polarization. To investigate miRNA regulation during macrophage M2b polarization of SLE, miRNA microarrays of murine bone marrow derived macrophages (BMDMs) were performed following stimulation with ALD-DNA for 6 and 36 h. Over 11% of the 1111 analyzed miRNAs appeared differentially expressed during ALD-DNA triggered macrophage M2b polarization. Cluster analysis revealed certain patterns in miRNA expression that are closely linked to ALD-DNA induced macrophage M2b polarization. Analysis of the network structure showed that the predicted functions of the differentially regulated miRNAs at 6 h are significantly associated with inflammatory response and disease. Differentially regulated miRNAs identified at 36 h were determined to be significantly related to cell proliferation by biological network analysis. In this study, dynamic miRNA expression patterns and network analysis are described for the first time during ALD-DNA induced macrophage M2b polarization. The data not only provide a better understanding of miRNA-mediated macrophage polarization but also demonstrate the future therapeutic potential of targeting miRNAs in SLE patients. 相似文献
19.
Helena C Martins Carlotta Gilardi A
zge Sungur Jochen Winterer Michael A Pelzl Silvia Bicker Fridolin Gross Theresa M Kisko Natalia MalikowskaRacia Moria D Braun Katharina Brosch Igor Nenadic Frederike Stein Susanne Meinert Rainer K W Schwarting Udo Dannlowski Tilo Kircher Markus Whr Gerhard Schratt 《EMBO reports》2022,23(10)
Bipolar disorder (BD) is a chronic mood disorder characterized by manic and depressive episodes. Dysregulation of neuroplasticity and calcium homeostasis are frequently observed in BD patients, but the underlying molecular mechanisms are largely unknown. Here, we show that miR‐499‐5p regulates dendritogenesis and cognitive function by downregulating the BD risk gene CACNB2. miR‐499‐5p expression is increased in peripheral blood of BD patients, as well as in the hippocampus of rats which underwent juvenile social isolation. In rat hippocampal neurons, miR‐499‐5p impairs dendritogenesis and reduces surface expression and activity of the L‐type calcium channel Cav1.2. We further identified CACNB2, which encodes a regulatory β‐subunit of Cav1.2, as a direct functional target of miR‐499‐5p in neurons. miR‐499‐5p overexpression in the hippocampus in vivo induces short‐term memory impairments selectively in rats haploinsufficient for the Cav1.2 pore forming subunit Cacna1c. In humans, miR‐499‐5p expression is negatively associated with gray matter volumes of the left superior temporal gyrus, a region implicated in auditory and emotional processing. We propose that stress‐induced miR‐499‐5p overexpression contributes to dendritic impairments, deregulated calcium homeostasis, and neurocognitive dysfunction in BD. 相似文献
20.
Mengli Li Chenchen Li Yejiao Luo Miaomiao Hu Zhu Liu Tao Zhang 《Microbial biotechnology》2022,15(12):2970
Fucosyllactoses (FL), including 2′‐fucosyllactose (2′‐FL) and 3‐fucosyllactose (3‐FL), have garnered considerable interest for their value in newborn formula and pharmaceuticals. In this study, an engineered Escherichia coli was developed for high‐titer FL biosynthesis by introducing multi‐level metabolic engineering strategies, including (1) individual construction of the 2′/3‐FL‐producing strains through gene combination optimization of the GDP‐L‐fucose module; (2) screening of rate‐limiting enzymes (α‐1,2‐fucosyltransferase and α‐1,3‐fucosyltransferase); (3) analysis of critical intermediates and inactivation of competing pathways to redirect carbon fluxes to FL biosynthesis; (4) enhancement of the catalytic performance of rate‐limiting enzymes by the RBS screening, fusion peptides and multi‐copy gene cloning. The final strains EC49 and EM47 produced 9.36 g/L for 2′‐FL and 6.28 g/L for 3‐FL in shake flasks with a modified‐M9CA medium. Fed‐batch cultivations of the two strains generated 64.62 g/L of 2′‐FL and 40.68 g/L of 3‐FL in the 3‐L bioreactors, with yields of 0.65 mol 2′‐FL/mol lactose and 0.67 mol 3‐FL/mol lactose, respectively. This research provides a viable platform for other high‐value‐added compounds production in microbial cell factories.An engineered Escherichia coli was developed for high‐titer FL biosynthesis by introducing multi‐level metabolic engineering strategies. Combined with the optimization of metabolic pathways and the performance improvement of rate‐limiting enzymes, 64.62 g/L of 2 ''‐FL and 40.68 g/L of 3‐FL were finally obtained in the 3‐L bioreactors. 相似文献