首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dysregulation of lipid metabolic pathways (cholesterol uptake and efflux) in macrophages results in the formation of lipid‐dense macrophages, named foam cells, that participate in plaque formation. NPY binding to NPY receptors in macrophages can modulate cell functions and affect the process of atherosclerotic plaques. The present study aimed to determine whether NPY affects the formation of macrophage‐derived foam cells and its underlying mechanisms in macrophages. THP‐1‐derived macrophages were incubated with oxidized low‐density lipoprotein (ox‐LDL) and treated with different concentrations of NPY. We analysed the relative levels of proteins related to cholesterol uptake and efflux. We found that NPY effectively increased cholesterol uptake and intracellular cholesterol content via the Y1 and Y5 receptors, and this effect was blocked by Y1 and Y5 antagonists. Mechanistically, NPY enhanced the expression of SRA and CD36 via the PKC/PPARγ pathways, promoting macrophage cholesterol uptake. Moreover, NPY significantly decreased cholesterol efflux to the extracellular cholesterol acceptors ApoA1 and HDL in macrophages. NPY mediated decreases in ABCA1, ABCG1 and SR‐BI expression through the inhibition of the JAK/STAT3 pathways. Our results suggest that NPY binding to the Y1 and Y5 receptors enhances foam cell formation by regulating cholesterol uptake and efflux in macrophages.  相似文献   

2.
Skin wound healing is an intractable problem that represents an urgent clinical need. To solve this problem, a large number of studies have focused on the use of exosomes (EXOs) derived from adipose‐derived stem cells (ADSCs). This review describes the mechanisms whereby ADSCs‐EXOs regulate wound healing and their clinical application. In the wound, ADSCs‐EXOs modulate immune responses and inflammation. They also promote angiogenesis, accelerate proliferation and re‐epithelization of skin cells, and regulate collagen remodelling which inhibits scar hyperplasia. Compared with ADSCs therapeutics, ADSCs‐EXOs have highly stability and are easily stored. Additionally, they are not rejected by the immune system and have a homing effect and their dosage can be easily controlled. ADSCs‐EXOs can improve fat grafting and promote wound healing in patients with diabetes mellitus. They can also act as a carrier and combined scaffold for treatment, leading to scarless cutaneous repair. Overall, ADSCs‐EXOs have the potential to be used in the clinic to promote wound healing.  相似文献   

3.
Research in the last few years has revealed that leukaemic cells can remodel the bone marrow niche into a permissive environment favouring leukaemic stem cell expansion. Tumour‐associated macrophages (TAMs) are prominent components of the tumour microenvironment and play an important role in the onset and progression of solid tumours. However, little is known about their role in the development of acute lymphoblastic leukaemia (ALL). Using a unique mouse model of T‐ALL induced by injection of EL4 T‐cell lymphoma cells to syngeneic C57BL/6 mice, we report herein that ALL leads to the invasion of leukaemia‐associated monocyte‐derived cells (LAMs) into the bone marrow and spleen of T‐ALL mice. Furthermore, we found that leukaemia cells could polarize bone marrow–derived macrophages (BMDMs) into LAMs. In turn, LAMs were able to protect leukaemia cells from drug‐induced apoptosis in vitro. Therapies targeted against the TAMs by inhibiting colony stimulating factor‐1 receptor (CSF‐1R) have emerged as a promising approach for cancer treatment. In this study, we demonstrate that CSF‐1R inhibition inhibits the viability of BMDMs, blocks LAMs polarization and reduces the abundance of LAMs in T‐ALL mice. In vivo, combination treatment of CSF‐1R inhibitor and vincristine (VCR) dramatically increased the survival of T‐ALL mice and delayed leukaemia progression compared with VCR monotherapy. Finally, these data reinforce the role of microenvironments in leukaemia and suggest that macrophages are a potential target for the development of novel therapeutic strategies in T‐ALL.  相似文献   

4.
Changes in composition of the intestinal microbiota are linked to the development of obesity and can lead to endothelial cell (EC) dysfunction. It is unknown whether EC can directly influence the microbiota. Insulin‐like growth factor‐1 (IGF‐1) and its receptor (IGF‐1R) are critical for coupling nutritional status and cellular growth; IGF‐1R is expressed in multiple cell types including EC. The role of ECIGF‐1R in the response to nutritional obesity is unexplored. To examine this, we use gene‐modified mice with EC‐specific overexpression of human IGF‐1R (hIGFREO) and their wild‐type littermates. After high‐fat feeding, hIGFREO weigh less, have reduced adiposity and have improved glucose tolerance. hIGFREO show an altered gene expression and altered microbial diversity in the gut, including a relative increase in the beneficial genus Akkermansia. The depletion of gut microbiota with broad‐spectrum antibiotics induces a loss of the favourable metabolic differences seen in hIGFREO mice. We show that IGF‐1R facilitates crosstalk between the EC and the gut wall; this crosstalk protects against diet‐induced obesity, as a result of an altered gut microbiota.  相似文献   

5.
Pyroptosis is associated with various cardiovascular diseases. Increasing evidence suggests that long noncoding RNAs (lncRNAs) have been implicated in gene regulation, but how lncRNAs participate in the regulation of pyroptosis in the heart remains largely unknown. In this study, we aimed to explore the antipyroptotic effects of lncRNA FGF9‐associated factor (FAF) in acute myocardial infarction (AMI). The expression patterns of lncRNA FAF, miR‐185‐5p and P21 activated kinase 2 (PAK2) were detected in hypoxia/ischaemia‐induced cardiomyocytes. Hoechst 33342/PI staining, lactate dehydrogenase (LDH) release assay, immunofluorescence and Western blotting were conducted to assay cell pyroptosis. The interaction between lncRNA FAF, miR‐185‐5p and PAK2 was verified by bioinformatics analysis, small RNA sequencing luciferase reporter assay and qRT‐PCR. The expression of LncRNA FAF was downregulated in hypoxic cardiomyocytes and myocardial tissues. Overexpression of lncRNA FAF could attenuate cardiomyocyte pyroptosis, improve cell viability and reduce infarct size during the procession of AMI. Moreover, lncRNA FAF was confirmed as a sponge of miR‐185‐5p and promoted PAK2 expression in cardiomyocytes. Collectively, our findings reveal a novel lncRNA FAF/miR‐185‐5p/PAK2 axis as a crucial regulator in cardiomyocyte pyroptosis, which might be a potential therapeutic target of AMI.  相似文献   

6.
ObjectivesStromal cell‐derived factor‐1 (SDF‐1) actively directs endogenous cell homing. Exendin‐4 (EX‐4) promotes stem cell osteogenic differentiation. Studies revealed that EX‐4 strengthened SDF‐1‐mediated stem cell migration. However, the effects of SDF‐1 and EX‐4 on periodontal ligament stem cells (PDLSCs) and bone regeneration have not been investigated. In this study, we aimed to evaluate the effects of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro and periodontal bone regeneration in vivo.MethodsCell‐counting kit‐8 (CCK8), transwell assay, qRT‐PCR and western blot were used to determine the effects and mechanism of SDF‐1/EX‐4 cotherapy on PDLSCs in vitro. A rat periodontal bone defect model was developed to evaluate the effects of topical application of SDF‐1 and systemic injection of EX‐4 on endogenous cell recruitment, osteoclastogenesis and bone regeneration in vivo.ResultsSDF‐1/EX‐4 cotherapy had additive effects on PDLSC proliferation, migration, alkaline phosphatase (ALP) activity, mineral deposition and osteogenesis‐related gene expression compared to SDF‐1 or EX‐4 in vitro. Pretreatment with ERK inhibitor U0126 blocked SDF‐1/EX‐4 cotherapy induced ERK signal activation and PDLSC proliferation. SDF‐1/EX‐4 cotherapy significantly promoted new bone formation, recruited more CXCR4+ cells and CD90+/CD34 stromal cells to the defects, enhanced early‐stage osteoclastogenesis and osteogenesis‐related markers expression in regenerated bone compared to control, SDF‐1 or EX‐4 in vivo.ConclusionsSDF‐1/EX‐4 cotherapy synergistically regulated PDLSC activities, promoted periodontal bone formation, thereby providing a new strategy for periodontal bone regeneration.  相似文献   

7.
Upregulation of Notch3 expression has been reported in many cancers and is considered a marker for poor prognosis. Hypoxia is a driving factor of the Notch3 signaling pathway; however, the induction mechanism and role of hypoxia-inducible factor-1α (HIF-1α) in the Notch3 response are still unclear. In this study, we found that HIF-1α and poly [ADP-ribose] polymerase 1 (PARP-1) regulate Notch3 induction under hypoxia via a noncanonical mechanism. In the analyzed cancer cell lines, Notch3 expression was increased during hypoxia at both the mRNA and protein levels. HIF-1α knockdown and Notch3 promoter reporter analyses indicated that the induction of Notch3 by hypoxia requires HIF-1α and also another molecule that binds the Notch3 promoter’s guanine-rich region, which lacks the canonical hypoxia response element. Therefore, using mass spectrometry analysis to identify the binding proteins of the Notch3 promoter, we found that PARP-1 specifically binds to the Notch3 promoter. Interestingly, analyses of the Notch3 promoter reporter and knockdown of PARP-1 revealed that PARP-1 plays an important role in Notch3 regulation. Furthermore, we demonstrate that PARP inhibitors, including an inhibitor specific for PARP-1, attenuated the induction of Notch3 by hypoxia. These results uncover a novel mechanism in which HIF-1α associates with PARP-1 on the Notch3 promoter in a hypoxia response element–independent manner, thereby inducing Notch3 expression during hypoxia. Further studies on this mechanism could facilitate a better understanding of the broader functions of HIF-1α, the roles of Notch3 in cancer formation, and the insights into novel therapeutic strategies.  相似文献   

8.
9.
目的:探讨信号转导及转录活化因子3(STAT3)对缺氧大鼠肺动脉平滑肌细胞(PASMCs)增殖的影响及作用机制。方法:组织块法原代培养PASMCs,用AG490预孵育后进行缺氧处理,半定量RT-PCR,Westernblot法分别检测缺氧2h、6h、12h、16h、24h组STAT3酪氨酸活性水平变化;半定量RT-PCR检测缺氧条件下上述时相点c-mycmRNA水平变化;^3H-TdR掺入法观察缺氧条件下细胞增殖变化。结果:Western blot定量分析显示缺氧培养6h组STAT3酪氨酸磷酸化水平升高,12h组达高峰,16h略有下降;缺氧培养2h组c-mycmRNA表达升高,4h达高峰,6h下降,12h恢复至正常水平;^3H-TdR掺入法结果显示缺氧6h组细胞^3H-TdR掺入量的增加,并随缺氧时间延长变化更为显著。AG490抑制缺氧诱导STAT3酪氨酸磷酸化及c-mycmRNA表达。结论:①STAT3活化和c-myc表达参与缺氧PASMcS增殖;②在缺氧PASMCs增殖过程中STAT3上调c-myc表达。  相似文献   

10.
ObjectiveBlood blister–like aneurysms (BBAs) are extremely rare aneurysms. They are predisposed to preoperative rerupture with a high case‐fatality rate. Here, we attempt to interrogate the distinct clinicopathology and the histological basis underlying its clinical rerupture.MethodsThree middle meningeal arteries, 11 BBA (5 reruptured, 6 non‐rerupture) and 19 saccular aneurysm samples were obtained for histopathological investigation. Three reruptured BBAs, 3 non‐reruptured BBAs and 6 saccular (3 ruptured, 3 unruptured) aneurysms were obtained for quantitative flow cytometry analysis.ResultsCompared with true saccular aneurysms, the BBA aneurysm wall lacks arterial stroma cells including CD31+ endothelial cells and α‐SMA + smooth muscle cells. Only fibroblasts and adventitial collagen were observed in the BBA aneurysm wall. Meanwhile, BBAs were enriched with infiltrated inflammatory cells, especially polarized macrophages. Based on the rerupture status, those reruptured BBAs showed drastically reduced fibroblasts and adventitia collagen. Moreover, M2‐polarized macrophages were observed dominant in BBAs and exhibit repairing cellular functions based on their interplays with arterial fibroblasts. Reduced M2 macrophages and arterial tissue repairing modulation may be responsible for the decreasing collagen synthesis and fibrosis repairment, which potentially dampens the aneurysm integrity and induces BBA aneurysm reruputre.ConclusionsBBAs poses histopathological features of occult pseudoaneurysms or dissecting aneurysms. Reduced M2 macrophages and adventitia collagen may dampen the structural integrity of BBAs and induce preoperative rerupture.  相似文献   

11.
12.
Immunotherapy is an attractive approach for treating cancer. T‐cell engagers (TCEs) are a type of immunotherapy that are highly efficacious; however, they are challenged by weak T‐cell activation and short persistence. Therefore, alternative solutions to induce greater activation and persistence of T cells during TCE immunotherapy is needed. Methods to activate T cells include the use of lectins, such as phytohemagglutinin (PHA). PHA has not been used to activate T cells in vivo, for immunotherapy, due to its biological instability and toxicity. An approach to overcome the limitations of PHA while also preserving its function is needed. In this study, we report a liposomal PHA which increased PHA stability, reduced toxicity and performed as an immunotherapeutic that is able to activate T cells for the use in future cancer immunotherapies to circumvent current obstacles in immunosuppression and T‐cell exhaustion.  相似文献   

13.
T‐cell receptor repertoire (TCRR) sequencing has been widely applied in many fields as a novel tool. This study explored characteristics of TCRR in detail with a cohort of 598 rheumatoid arthritis (RA) patients before and after anti‐rheumatic treatments. We highlighted the abnormal TCRR distribution in RA characterized by decreased diversity and increased proportion of hyperexpanded clones (HECs), which was potentially attributed to skewed usage of global V/J segments but not a few certain ones. Enriched motifs analysis in RA community demonstrated the huge heterogeneity of CDR3 sequences, so that individual factors are strongly recommended to be taken into consideration when it comes to clinical application of TCRR. Disease‐modifying antirheumatic drugs (DMARDs) can regulate immune system through recovery of TCRR richness to relieve symptoms. Remarkably, sensitive gene profile and advantageous gene profile were identified in this study as new biomarkers for different DMARDs regimens.  相似文献   

14.
Foraging by wildlife on anthropogenic foods can have negative impacts on both humans and wildlife. Addressing this issue requires reliable data on the patterns of anthropogenic foraging by wild animals, but while direct observation by researchers can be highly accurate, this method is also costly and labor‐intensive, making it impractical in the long‐term or over large spatial areas. Camera traps and observations by guards employed to deter animals from fields could be efficient alternative methods of data collection for understanding patterns of foraging by wildlife in crop fields. Here, we investigated how data on crop‐foraging by chacma baboons and vervet monkeys collected by camera traps and crop guards predicted data collected by researchers, on a commercial farm in South Africa. We found that data from camera traps and field guard observations predicted crop loss and the frequency of crop‐foraging events from researcher observations for crop‐foraging by baboons and to a lesser extent for vervets. The effectiveness of cameras at capturing crop‐foraging events was dependent on their position on the field edge. We believe that these alternatives to direct observation by researchers represent an efficient and low‐cost method for long‐term and large‐scale monitoring of foraging by wildlife on crops.  相似文献   

15.
Cardiac development is reliant upon the spatial and temporal regulation of both genetic and chemical signals. Central to the communication of these signals are direct interactions between cells and their surrounding environment. The extracellular matrix (ECM) plays an integral role in cell communication and tissue growth throughout development by providing both structural support and chemical signaling factors. The present review discusses elements of cell–cell and cell–ECM interactions involved in cardiogenesis, and how disruption of these interactions can result in numerous heart defects. Examining the relationships between cells and their immediate environment has implications for novel and existing therapeutic strategies to combating congenital disorders. Birth Defects Research (Part C) 90:1–7, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
High‐protein feeding acutely lowers postprandial glucose concentration compared to low‐protein feeding, despite a dichotomous rise of circulating glucagon levels. The physiological role of this glucagon rise has been largely overlooked. We here first report that glucagon signalling in the dorsal vagal complex (DVC) of the brain is sufficient to lower glucose production by activating a Gcgr–PKAERK–KATP channel signalling cascade in the DVC of rats in vivo. We further demonstrate that direct blockade of DVC Gcgr signalling negates the acute ability of high‐ vs. low‐protein feeding to reduce plasma glucose concentration, indicating that the elevated circulating glucagon during high‐protein feeding acts in the brain to lower plasma glucose levels. These data revise the physiological role of glucagon and argue that brain glucagon signalling contributes to glucose homeostasis during dietary protein intake.  相似文献   

17.
The reliability of evolutionary reconstructions based on the fossil record critically depends on our knowledge of the factors affecting the fossilization of soft‐bodied organisms. Despite considerable research effort, these factors are still poorly understood. In order to elucidate the main prerequisites for the preservation of soft‐bodied organisms, we conducted long‐term (1–5 years) taphonomic experiments with the model crustacean Artemia salina buried in five different sediments. The subsequent analysis of the carcasses and sediments revealed that, in our experimental settings, better preservation was associated with the fast deposition of aluminum and silicon on organic tissues. Other elements such as calcium, magnesium, and iron, which can also accumulate quickly on the carcasses, appear to be much less efficient in preventing decay. Next, we asked if the carcasses of uni‐ and multicellular organisms differ in their ability to accumulate aluminum ions on their surface. The experiments with the flagellate Euglena gracilis and the sponge Spongilla lacustris showed that aluminum ions are more readily deposited onto a multicellular body. This was further confirmed by the experiments with uni‐ and multicellular stages of the social ameba Dictyostelium discoideum. The results lead us to speculate that the evolution of cell adhesion molecules, which provide efficient cell–cell and cell–substrate binding, probably can explain the rich fossil record of soft‐bodied animals, the comparatively poor fossil record of nonskeletal unicellular eukaryotes, and the explosive emergence of the Cambrian diversity of soft‐bodied fossils.  相似文献   

18.
19.
ObjectivesThe impacts of the current COVID‐19 pandemic on maternal and foetal health are enormous and of serious concern. However, the influence of SARS‐CoV‐2 infection at early‐to‐mid gestation on maternal and foetal health remains unclear.Materials and methodsHere, we report the follow‐up study of a pregnant woman of her whole infective course of SARS‐CoV‐2, from asymptomatic infection at gestational week 20 to mild and then severe illness state, and finally cured at Week 24. Following caesarean section due to incomplete uterine rupture at Week 28, histological examinations on the placenta and foetal tissues as well as single‐cell RNA sequencing (scRNA‐seq) for the placenta were performed.ResultsCompared with the gestational age‐matched control placentas, the placenta from this COVID‐19 case exhibited more syncytial knots and lowered expression of syncytiotrophoblast‐related genes. The scRNA‐seq analysis demonstrated impaired trophoblast differentiation, activation of antiviral and inflammatory CD8 T cells, as well as the tight association of increased inflammatory responses in the placenta with complement over‐activation in macrophages. In addition, levels of several inflammatory factors increased in the placenta and foetal blood.ConclusionThese findings illustrate a systematic cellular and molecular signature of placental insufficiency and immune activation at the maternal–foetal interface that may be attributed to SARS‐CoV‐2 infection at the midgestation stage, which highly suggests the extensive care for maternal and foetal outcomes in pregnant women suffering from COVID‐19.  相似文献   

20.
  1. Aphids are abundant in natural and managed vegetation, supporting a diverse community of organisms and causing damage to agricultural crops. Due to a changing climate, periods of drought are anticipated to increase, and the potential consequences of this for aphid–plant interactions are unclear.
  2. Using a meta‐analysis and synthesis approach, we aimed to advance understanding of how increased drought incidence will affect this ecologically and economically important insect group and to characterize any potential underlying mechanisms. We used qualitative and quantitative synthesis techniques to determine whether drought stress has a negative, positive, or null effect on aphid fitness and examined these effects in relation to (a) aphid biology, (b) geographical region, and (c) host plant biology.
  3. Across all studies, aphid fitness is typically reduced under drought. Subgroup analysis detected no difference in relation to aphid biology, geographical region, or the aphid–plant combination, indicating the negative effect of drought on aphids is potentially universal. Furthermore, drought stress had a negative impact on plant vigor and increased plant concentrations of defensive chemicals, suggesting the observed response of aphids is associated with reduced plant vigor and increased chemical defense in drought‐stressed plants.
  4. We propose a conceptual model to predict drought effects on aphid fitness in relation to plant vigor and defense to stimulate further research.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号