首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selenocysteine-containing selenium-transport protein in rat plasma   总被引:2,自引:0,他引:2  
A selenocysteine-containing rat plasma protein (selenoprotein P) was examined for a possible role in the transport of selenium in the rat. A time-course study of the localization of injected 75Se from [75Se]selenite indicated that one-half of the selenium was sequestered by liver tissue 1 h after injection and that one-fourth of the 75Se in the plasma was attached to selenoprotein P 3 h after injections. By 25 h there was little 75Se in plasma, and much of the 75Se had accumulated in nonhepatic tissues. 75Se was incorporated into selenoprotein P by liver slices in a process that was sensitive to the protein synthesis inhibitor cycloheximide. The fate of 75Se from intracardially injected 75Se-labeled selenoprotein P was followed in rats maintained on selenium-deficient and selenium-sufficient diets. Substantially more of the injected 75Se was present per gram wet weight in the testes and kidneys than the livers of the selenium-deprived rats after 5 h. The results indicate that selenoprotein P is synthesized in rat liver and that it transfers selenium from the liver to extrahepatic tissues.  相似文献   

2.
Deletion of the mouse selenoprotein P gene (Sepp1) lowers selenium concentrations in many tissues. We examined selenium homeostasis in Sepp1(-/-) and Sepp1(+/+) mice to assess the mechanism of this. The liver produces and exports selenoprotein P, which transports selenium to peripheral tissues, and urinary selenium metabolites, which regulate whole-body selenium. At intakes of selenium near the nutritional requirement, Sepp1(-/-) mice had whole-body selenium concentrations 72 to 75% of Sepp1(+/+) mice. Genotype did not affect dietary intake of selenium. Sepp1(-/-) mice excreted in their urine approximately 1.5 times more selenium in relation to their whole-body selenium than did Sepp1(+/+) mice. In addition, Sepp1(-/-) mice gavaged with (75)SeO(2-)(3) excreted 1.7 to 2.4 times as much of the (75)Se in the urine as did Sepp1(+/+) mice. These findings demonstrate that deletion of selenoprotein P raises urinary excretion of selenium. When urinary small-molecule (75)Se was injected intravenously into mice, over 90% of the (75)Se appeared in the urine within 24 h, regardless of selenium status. This shows that urinary selenium is dedicated to excretion and not to utilization by tissues. Our results indicate that deletion of selenoprotein P leads to increased urinary selenium excretion. We propose that the absence of selenoprotein P synthesis in the liver makes more selenium available for urinary metabolite synthesis, increasing loss of selenium from the organism and causing the decrease in whole-body selenium and some of the decreases observed in tissues of Sepp1(-/-) mice.  相似文献   

3.
4.
A reported association between estrogen and selenium status may be important in the regulation of selenium metabolism. In this study, the effect of estrogen status on the metabolism of orally administered (75)Se-selenite and tissue selenium status was investigated. Female Sprague-Dawley rats were bilaterally ovariectomized at 7 weeks of age and implanted with either a placebo pellet (OVX) or pellet containing estradiol (OVX+E2), or were sham operated (Sham). At 12 weeks of age, 60 μCi of (75)Se as selenite was orally administered to OVX and OVX+E2 rats. Blood and organs were collected 1, 3, 6 and 24 h after dosing. Estrogen status was associated with time-dependent differences in distribution of (75)Se in plasma, red blood cell (RBC), liver, heart, kidney, spleen, brain and thymus and incorporation of (75)Se into plasma selenoprotein P (Sepp1) and glutathione peroxidase (GPx). Estrogen treatment also significantly increased selenium concentration and GPx activity in plasma, liver and brain, selenium concentration in RBC and hepatic Sepp1 and GPx1 messenger RNA. These results suggest that estrogen status affects tissue distribution of selenium by modulating Sepp1, as this protein plays a central role in selenium transport.  相似文献   

5.
The essential micronutrient selenium (Se) exerts its biological effects mainly through enzymatically active selenoproteins. Their biosynthesis depends on the 21st proteinogenic amino acid selenocysteine and thus on dietary Se supply. Hepatically derived selenoprotein P (SEPP) is the central selenoprotein in blood controlling Se transport and distribution. Kidney-derived extracellular glutathione peroxidase is another relevant serum selenoprotein depending on SEPP for biosynthesis. Therefore, secretion of SEPP by hepatocytes is crucial to convert nutritional sources into serum Se, supporting Se status and selenoprotein biosynthesis in other tissues.In order to compare the bioactivity of 10 different selenocompounds, their dose-dependent toxicities and nutritional qualities to support SEPP and glutathione peroxidase biosynthesis were determined in a murine and two human liver cell lines. Characteristic dose- and time-dependent effects on viability and SEPP production were observed. Incubations with 100 nM sodium selenite, l- or dl-selenocystine, selenodiglutathione or selenomethyl-selenocysteine increased SEPP concentrations in the culture medium up to 6.5-fold over control after 72 h. In comparison, sodium selenate, l- or dl-selenomethionine or methylseleninic acid was less effective and increased SEPP by 2.5-fold under these conditions. As expected, ebselen did not increase selenoprotein production, supporting its classification as a stable selenocompound. Methylseleninic acid, l-selenocystine, selenodiglutathione or selenite induced cell death in micromolar concentrations, whereas selenomethionine or ebselen was not toxic within the concentration range tested.Our results indicate that hepatic selenoprotein production and toxicity of selenocompounds do not correlate with and rather represent compound-specific properties. The favourable profile of selenomethylselenocysteine warrants its consideration as a promising option for supplementation purposes.  相似文献   

6.
Multiple selenocysteine content of selenoprotein P in rats   总被引:2,自引:0,他引:2  
Partially purified selenoprotein P from rat plasma was digested with either trypsin, endoprotease Lys-C, or endoprotease Arg-C and analyzed by high pressure liquid chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. Several 75Se-labeled peptides were detected. The moles of selenium in selenoprotein P were estimated based on the 75Se content of the 75Se-labeled peptide fragments. Using this method, selenoprotein P was shown to contain approximately 9 moles of selenium. This is the first report of a selenoprotein containing more than one selenium per polypeptide. These findings support the proposed function of this protein in selenium transport.  相似文献   

7.
Although dietary selenium (Se) deficiency results in phenotypes associated with selenoprotein depletion in various organs, the brain is protected from Se loss. To address the basis for the critical role of Se in brain function, we carried out comparative gene expression analyses for the complete selenoproteome and associated biosynthetic factors. Using the Allen Brain Atlas, we evaluated 159 regions of adult mouse brain and provided experimental analyses of selected selenoproteins. All 24 selenoprotein mRNAs were expressed in the mouse brain. Most strikingly, neurons in olfactory bulb, hippocampus, cerebral cortex, and cerebellar cortex were exceptionally rich in selenoprotein gene expression, in particular in GPx4, SelK, SelM, SelW, and Sep15. Over half of the selenoprotein genes were also expressed in the choroid plexus. A unique expression pattern was observed for one of the highly expressed selenoprotein genes, SelP, which we suggest to provide neurons with Se. Cluster analysis of the expression data linked certain selenoproteins and selenocysteine machinery genes and suggested functional linkages among selenoproteins, such as that between SelM and Sep15. Overall, this study suggests that the main functions of selenium in mammals are confined to certain neurons in the brain.  相似文献   

8.
Selenium is an essential micronutrient that function through selenoproteins. Selenium deficiency results in lower concentrations of selenium and selenoproteins. The brain maintains it's selenium better than other tissues under low-selenium conditions. Recently, the selenium-containing protein selenoprotein P (Sepp) has been identified as a possible transporter of selenium. The targeted disruption of the selenoprotein P gene (Sepp1) results in decreased brain selenium concentration and neurological dysfunction, unless selenium intake is excessive However, the effect of selenoprotein P deficiency on the processes of memory formation and synaptic plasticity is unknown. In the present studies Sepp1(-/-) mice and wild type littermate controls (Sepp1(+/+)) fed a high-selenium diet (1 mg Se/kg) were used to characterize activity, motor coordination, and anxiety as well as hippocampus-dependent learning and memory. Normal associative learning, but disrupted spatial learning was observed in Sepp1(-/-) mice. In addition, severe alterations were observed in synaptic transmission, short-term plasticity and long-term potentiation in hippocampus area CA1 synapses of Sepp1(-/-) mice on a 1 mg Se/kg diet and Sepp1(+/+) mice fed a selenium-deficient (0 mg Se/kg) diet. Taken together, these data suggest that selenoprotein P is required for normal synaptic function, either through presence of the protein or delivery of required selenium to the CNS.  相似文献   

9.
To investigate the selenium status during long-term dietary supply of selenium yeast, 30-day-old male rats were fed for 379 days a methionine-adequate low-selenium diet supplemented with 0.2 mg Se/kg (selenium-adequate diet) or 1.5 mg Se/kg (high-selenium diet) in the form of selenium yeast that contained 60% of the element as l-selenomethionine. Their selenium load was determined at several intervals by neutron activation analysis of the selenium concentrations in the main selenium body pools, skeletal muscle and liver. After 64 days the tissue selenium concentrations plateaued in both groups and then stayed at that level. Compared with the selenium-adequate group, elevated tissue selenium concentrations were found in the high-selenium group, but the increase by a factor of 3.5 in the muscle and by a factor of 2.3 in the liver was smaller than the 7.5-fold increase in the selenium intake. In the selenium-adequate group about 50% of the muscle selenium and 30% of the liver selenium and in the high-selenium group about 85% of the muscle selenium and 70% of the liver selenium were estimated to be present in non-selenoprotein forms. During selenium depletion the liver glutathione peroxidase activity in the high-selenium group remained unaffected for 4 weeks and then decreased more slowly than that in the selenium-adequate group. From these results it can be concluded that selenium incorporated from the selenium yeast diet into non-selenoprotein forms can serve as an endogenous selenium source to maintain selenoprotein levels in periods of insufficient selenium supply.  相似文献   

10.
Studies with 75Se have shown the existence of a rat plasma selenoprotein in addition to glutathione peroxidase. Because the function of the protein is not known, it has been referred to as selenoprotein P. A partially purified preparation was used to produce a monoclonal antibody to selenoprotein P. The antibody did not bind glutathione peroxidase as evidenced by its failure to remove glutathione peroxidase activity from rat plasma by immunoprecipitation. An immunoaffinity column was prepared with the monoclonal antibody, and selenoprotein P was purified 1270-fold from rat plasma in a two-step procedure. The purified selenoprotein P migrated in a single band with an Mr of 57,000 on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography demonstrated that this band contained 75Se when the protein was purified from rats which had received 75SeO2-(3). A competitive radioimmunoassay for selenoprotein P was developed. The selenoprotein P concentration in plasma of selenium-replete rats was determined with this assay to be 51 +/- 3.7 micrograms/ml. It was less than 5 micrograms/ml in plasma from selenium-deficient rats. Injection of 50 micrograms of selenium into selenium-deficient rats caused an increase in selenoprotein P from less than 10% of control to 52% of control in 6 h. Plasma glutathione peroxidase activity increased only from 2.2 to 3.1% of control. These experiments demonstrate that rat plasma contains a selenoprotein distinct from glutathione peroxidase. The concentration of this selenoprotein is depressed in selenium deficiency, as is glutathione peroxidase activity, but selenoprotein P increases more rapidly when selenium is supplied than does glutathione peroxidase activity.  相似文献   

11.
Radioactive inorganic selenium, administered intraperitoneally at 1 mg/kg body weight to young adult rats, acculumulates in testes for 7 days or longer, whereas liver, kidney and serum levels fall more rapidly. 3–4 h after administration of [75Se]selenite, 55–60% of the radioactivity in the testes was found in the cytosol, associated with protein. Ultragel ACA-22 chromatography of testis cytosol prepared 4 h after 75Se treatment revealed a major selenoprotein having an apparent molecular weight of 59 000. Sodium dedecyl sulfate polyacrylamide gel electrophoresis indicated extensive heterogeneity of radioactivity with apparent molecular weights of about 57 000 and 45 000 and 15 000. Cytosol from rats treated 4 weeks earlier showed predominance of the 15 000 molecular weight [75Se]selenoprotein. Sucrose density gradient ultracentrifugation at either low or high ionic strength demonstrated a single 7 S selenoprotein. Chromatography with Blue-Sepharose indicated that the radioactivity was not associated with albumin. Strong 75Se binding to protein was demonstrated by overnight dialysis against water, 2 M NaCl, β-mercaptoethanol, 8 M urea, selenite. However, 85% of the 75Se was removed by dialysis against 0.5 M NaOh. This stability contrasts with the lability of disulfide reagents of selenite-protein complexes formed in vitro. The fact that selenium is incorporated in substantial amounts into a discrete and stable protein suggests a physiological role for this essential trace element in the testes.  相似文献   

12.
13.
富硒生物样品中硒的价态和形态分析   总被引:9,自引:0,他引:9  
本文利用2,3—二氨基萘(DAN)荧光法测定了富硒玉米粉、硒酵母蛋白等样品中四价硒、六价硒、有机硒含量及总硒量。进一步验证了差减法测定不同价态硒含量的实验方法  相似文献   

14.
15.
Incorporation of selenium into ∼25 mammalian selenoproteins occurs by translational recoding whereby in-frame UGA codons are redefined to encode the selenium containing amino acid, selenocysteine (Sec). Here we applied ribosome profiling to examine the effect of dietary selenium levels on the translational mechanisms controlling selenoprotein synthesis in mouse liver. Dietary selenium levels were shown to control gene-specific selenoprotein expression primarily at the translation level by differential regulation of UGA redefinition and Sec incorporation efficiency, although effects on translation initiation and mRNA abundance were also observed. Direct evidence is presented that increasing dietary selenium causes a vast increase in ribosome density downstream of UGA-Sec codons for a subset of selenoprotein mRNAs and that the selenium-dependent effects on Sec incorporation efficiency are mediated in part by the degree of Sec-tRNA[Ser]Sec Um34 methylation. Furthermore, we find evidence for translation in the 5′-UTRs for a subset of selenoproteins and for ribosome pausing near the UGA-Sec codon in those mRNAs encoding the selenoproteins most affected by selenium availability. These data illustrate how dietary levels of the trace element selenium can alter the readout of the genetic code to affect the expression of an entire class of proteins.  相似文献   

16.
17.
Selenium–Mercury Interactions in Man and Animals   总被引:4,自引:0,他引:4  
Selenium–mercury interactions were most extensively studied in relation to alleviation of Hg toxicity by added selenium. This presentation considers the influence of mercury on endogenous selenium, on its tissue and cellular “status” after lifelong or acute exposure to mercury vapor (Hgo). Discussed are data obtained from (1) humans living near or working in a mercury mine, and (2) rats experimentally exposed in the mine. Mercury vapor is unique—or similar to methylmercury—because of its ability to penetrate cell membranes and so invade all cells, where it is oxidized in the biologically active form (Hg++) by catalase. Such in situ-generated ions can react with endogenously generated highly reactive Se metabolites, like HSe−, and render a part of the selenium unavailable for selenoprotein synthesis. Data on human populations indicate that in moderate Hg exposure combined with an adequate selenium supply through diet, Se bioavailability can be preserved. On the other hand, the results of an acute exposure study emphasize the dual role of selenium in mercury detoxification. Besides the well-known Se coaccumulation through formation of nontoxic Hg–Se complexes, we observed noticeable Se (co)excretion, at least at the beginning of exposure. The higher Hg accumulation rate in the group of animals with lower basal selenium levels can also point to selenium involvement in mercury excretion. In such conditions there is a higher probability for decreased selenoprotein levels (synthesis) in some tissues or organs, depending on the synthesis hierarchy.  相似文献   

18.
The selenoprotein, cellular glutathione peroxidase (cGPx), has an important role in protecting organisms from oxidative damage through reducing levels of harmful peroxides. The liver and kidney in particular, have important roles in selenium (Se) metabolism and Se is excreted predominantly in urine and feces. In order to characterize the dynamics of these pathways we have measured the time-dependent changes in the quantities of hepatic, renal, urinary, and fecal Se species in mice fed Se-adequate and Se-deficient diets after injection of (82)Se-enriched selenite. Exogenous (82)Se was transformed to cGPx in both the liver and kidney within 1 h after injection and the synthesis of cGPx decreased 1 to 6 h and continued at a constant level from 6 to 72 h after injection. The total amount of Se associated with cGPx in mice fed Se-deficient diets was found to be less than in mice fed Se-adequate diets. This finding indicated that cGPx synthesis was suppressed under Se-deficient conditions and did not recover with selenite injection. Excess Se was associated with selenosugar in liver and transported to the kidney within 1 h after injection, and then excreted in urine and feces within 6 h after injection. Any excess amount of Se was excreted mainly as a selenosugar in urine.  相似文献   

19.
The selenoenzyme glutathione peroxidase cannot account for all the physiological effects of selenium in rat liver. Therefore, a study was carried out with the ultimate aim of identifying selenoproteins other than glutathione peroxidase. The incorporation of 75Se, given as 75SeO32?, into centrifugally separated fractions of selenium-deficient and control rat livers was determined. In selenium-deficient liver much less 75Se was incorporated into the 105,000g supernatant fraction than in controls, so this fraction was studied further by gel filtration, ion-exchange, and hydroxylapatite chromatography. Selenoglutathione peroxidase and another selenoprotein, called 75Se-P, were separated and identified. Both these selenoproteins were also found in plasma. Selenium deficiency had opposite effects on incorporation of 75Se by these proteins. It decreased 75Se incorporation by glutathione peroxidase at 3 and 72 h after 75Se injection but increased 75Se incorporation by 75Se-P. This suggests that 75Se-P competes for available selenium better than does glutathione peroxidase when the element is in short supply. Apparent molecular weights of 75Se-P from liver and plasma determined by gel filtration were, respectively, 83,000 and 79,000, which indicate proteins smaller than glutathione peroxidase. Cycloheximide pretreatment of the rat blocked 75Se incorporation into plasma 75Se-P. These experiments establish the existence of a selenoprotein, 75Se-P, in rat liver and plasma which is chromatographically distinct from glutathione peroxidase and which incorporates 75Se differently from glutathione peroxidase. 75Se-P may account for some of the physiological effects of selenium.  相似文献   

20.
Clinical data suggest that selenium (Se) supplementation decreases disease predisposition and severity and accelerates recovery in a variety of pathologies. Pre-supplementation Se levels and sex represent important determinants of these Se-dependent health effects. Accordingly, we previously reported on sexually dimorphic expression patterns of Se-dependent glutathione peroxidase 1, type I deiodinase, and selenoprotein P in young mice. In the present study we investigated whether these differences vary with age. The strong sexual dimorphic expression of hepatic type I deiodinase that was observed in young mice vanished both at the mRNA and enzyme activity level by 1 year of age. In contrast, the strong sex-specific differences in renal type I deiodinase mRNA expression were sustained with age. Accordingly, deiodinase enzymatic activities differed in male and female kidneys, largely independent of age [average of 6.8 vs. 15.7 pmol/(min mg) in males vs. females]. In parallel, hepatic Se concentrations and glutathione peroxidase activities increased in female mice compared to male littermates, establishing a new sexual dimorphism in liver. Thus, age represents another important modifier of the dynamic sex- and tissue-specific selenoprotein expression patterns. These data highlight again the unique physiological regulatory mechanisms that have evolved to control Se metabolism according to the actual needs of the organism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号