首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wild European Starlings ( Sturnus vulgaris ) shed Campylobacter at high rates, suggesting that they may be a source of human and farm animal infection. A survey of Campylobacter shedding of 957 wild starlings was undertaken by culture of faecal specimens and genetic analysis of the campylobacters isolated: shedding rates were 30.6% for Campylobacter jejuni , 0.6% for C. coli and 6.3% for C. lari. Genotyping by multilocus sequence typing (MLST) and antigen sequence typing established that these bacteria were distinct from poultry or human disease isolates with the ST-177 and ST-682 clonal complexes possibly representing starling-adapted genotypes. There was seasonal variation in both shedding rate and genotypic diversity, both exhibiting a maximum during the late spring/early summer. Host age also affected Campylobacter shedding, which was higher in younger birds, and turnover was rapid with no evidence of cross-immunity among Campylobacter species or genotypes. In nestlings, C. jejuni shedding was evident from 9 days of age but siblings were not readily co-infected. The dynamics of Campylobacter infection of starlings differed from that observed in commercial poultry and consequently there was no evidence that wild starlings represent a major source of Campylobacter infections of food animals or humans.  相似文献   

2.
AIMS: The main objectives of this study were to investigate the diversity of Campylobacter genotypes circulating in Senegal and to determine the frequency of antibiotic resistance. METHODS AND RESULTS: Strains of Campylobacter jejuni isolated from poultry (n = 99) and from patients (n = 10) and Campylobacter coli isolated from poultry (n = 72) were subtyped by pulsed-field gel electrophoresis (PFGE). The pulsotypes obtained after digestion by SmaI and KpnI revealed a significant genetic diversity in both species, but without any predominant pulsotypes. However, farm-specific clones were identified in the majority of poultry houses (76.5%). Human and poultry isolates of C. jejuni had common PFGE patterns. High quinolone-resistance rates were observed for C. jejuni (43.4%) and C. coli (48.6%) isolates obtained from poultry. CONCLUSIONS: The results showed a genetic diversity of Campylobacter between farms indicating multiple sources of infection; but specific clones had the ability to colonize the broiler farms. The antimicrobial resistance patterns were not related to any specific PFGE pattern suggesting that resistance was due to the selective pressure of antibiotic usage. Campylobacter with similar genotypes were circulating in both human and poultry. SIGNIFICANCE AND IMPACT OF THE STUDY: This study is important for the understanding of the epidemiology of Campylobacter in broiler farms in Senegal. It also emphasizes the need for a more stringent policy in the use of antimicrobial agents in food animals.  相似文献   

3.
Campylobacter species, primarily Campylobacter jejuni and Campylobacter coli, are regarded as a major cause of human gastrointestinal disease, commonly acquired by eating undercooked chicken. We describe a PCR-ELISA for the detection of Campylobacter species and the discrimination of C. jejuni and C. coli in poultry samples. The PCR assay targets the 16S/23S ribosomal RNA intergenic spacer region of Campylobacter species with DNA oligonucleotide probes designed for the specific detection of C. jejuni, C. coli, and Campylobacter species immobilized on Nucleo-Link wells and hybridized to PCR products modified with a 5' biotin moiety. The limit of detection of the PCR-ELISA was 100-300 fg (40-120 bacterial cells) for C. jejuni and C. coli with their respective species-specific oligonucleotide probes and 10 fg (4 bacterial cells) with the Campylobacter genus-specific probe. Testing of poultry samples, which were presumptive positive for Campylobacter following culture on the Malthus V analyzer, with the PCR-ELISA determined Campylobacter to be present in 100% of samples (n = 40) with mixed cultures of C. jejuni/C. coli in 55%. The PCR-ELISA when combined with culture pre-enrichment is able to detect the presence of Campylobacter and definitively identify C. jejuni and C. coli in culture-enriched poultry meat samples.  相似文献   

4.
Campylobacter jejuni is a major cause of diarrheal disease and food-borne gastroenteritis. The main reservoir of C. jejuni in poultry is the cecum, with an estimated content of 6 to 8 log10 CFU/g. If a flock is infected with C. jejuni, the majority of the birds in that flock will harbor the bacterium. Diagnostics at the flock level could thus be an important control point. The aim of the work presented here was to develop a complete quantitative PCR-based detection assay for C. jejuni obtained directly from cecal contents and fecal samples. We applied an approach in which the same paramagnetic beads were used both for cell isolation and for DNA purification. This integrated approach enabled both fully automated and quantitative sample preparation and a DNA extraction method. We developed a complete quantitative diagnostic assay through the combination of the sample preparation approach and real-time 5'-nuclease PCR. The assay was evaluated both by spiking the samples with C. jejuni and through the detection of C. jejuni in naturally colonized chickens. Detection limits between 2 and 25 CFU per PCR and a quantitative range of >4 log10 were obtained for spiked fecal and cecal samples. Thirty-one different poultry flocks were screened for naturally colonized chickens. A total of 262 (204 fecal and 58 cecal) samples were analyzed. Nineteen of the flocks were Campylobacter positive, whereas 12 were negative. Two of the flocks contained Campylobacter species other than C. jejuni. There was a large difference in the C. jejuni content, ranging from 4 to 8 log10 CFU/g of fecal or cecal material, for the different flocks tested. Some issues that have not yet promoted much attention are the prequantitative differences in the ability of C. jejuni to colonize poultry and the importance of these differences for causing human disease through food contamination. Understanding the colonization kinetics in poultry is therefore of great importance for controlling human infections by this bacterium.  相似文献   

5.
Six previously published polymerase chain reaction (PCR) assays each targeting different genes were used to speciate 116 isolates previously identified as Campylobacter jejuni using routine microbiological techniques. Of the 116 isolates, 84 were of poultry origin and 32 of human origin. The six PCR assays confirmed the species identities of 31 of 32 (97%) human isolates and 56 of 84 (67%) poultry isolates as C. jejuni. Twenty eight of 84 (33%) poultry isolates were identified as Campylobacter coli and the remaining human isolate was tentatively identified as Campylobacter upsaliensis based on the degree of similarity of 16S rRNA gene sequences. Four of six published PCR assays showed 100% concordance in their ability to speciate 113 of the 116 (97.4%) isolates; two assays failed to generate a PCR product with four to 10 isolates. A C. coli-specific PCR identified all 28 hippuricase gene (hipO)-negative poultry isolates as C. coli although three isolates confirmed to be C. jejuni by the remaining five assays were also positive in this assay. A PCR-restriction fragment length polymorphism assay based on the 16S rRNA gene was developed, which contrary to the results of the six PCR-based assays, identified 28 of 29 hipO-negative isolates as C. jejuni. DNA sequence analysis of 16S rRNA genes from four hipO-negative poultry isolates showed they were almost identical to the C. jejuni type strain 16S rRNA sequences ATCC43431 and ATCC33560 indicating that assays reliant on 16S rRNA sequence may not be suitable for the differentiation of these two species.  相似文献   

6.
AIM: The research focused on the determination of the toxicity variation associated with Campylobacter jejuni isolated from humans and chickens. METHODS AND RESULTS: Campylobacter jejuni isolates were obtained from chicken carcasses and from humans exhibiting symptoms of campylobacteriosis. Using HeLa cells as the in vitro model, toxicity was determined for each isolate. The mean toxicity level of the chicken isolates was significantly lower than that of the human isolates (P < 0.001). There was a wide range of toxicity in C. jejuni isolated from chickens and the percentage of isolates exhibiting low toxicity remaining relatively constant. All C. jejuni isolates from humans possessed either medium or high levels of toxicity. CONCLUSIONS: All wildtype C. jejuni isolates obtained from poultry carcasses may not be equally important as a human foodborne pathogen. SIGNIFICANCE AND IMPACT OF STUDY: Campylobacter jejuni remains a primary foodborne pathogen and increased efforts are needed to determine the impact of wildtype isolates in causing human illness. The present research indicates that all isolates may not be equally important in regards to disease potential. The information found should be included in efforts to develop C. jejuni detection, control and infection modelling.  相似文献   

7.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

8.
For epidemiological studies of Campylobacter infections, molecular typing methods that can differentiate campylobacters at the strain level are needed. In this study we used a recently developed genotyping method, amplified fragment length polymorphism (AFLP), which is based on selective amplification of restriction fragments of chromosomal DNA, for genetic typing of Campylobacter jejuni and Campylobacter coli strains derived from humans and poultry. We developed an automated AFLP fingerprinting method in which restriction endonucleases HindIII and HhaI were used in combination with one set of selective PCR primers. This method resulted in evenly distributed band patterns for amplified fragments ranging from 50 to 500 bp long. The discriminatory power of AFLP was assessed with a C. jejuni strain, an isogenic flagellin mutant, and distinct C. jejuni strains having known pulsed-field gel electrophoresis and fla PCR-restriction fragment length polymorphism genotypes. Unrelated C. jejuni strains produced heterogeneous patterns, whereas genetically related strains produced similar AFLP patterns. Twenty-five Campylobacter strains obtained from poultry farms in The Netherlands grouped in three C. jejuni clusters that were separate from a C. coli cluster. The band patterns of 10 C. jejuni strains isolated from humans were heterogeneous, and most of these strains grouped with poultry strains. Our results show that AFLP analysis can distinguish genetically unrelated strains from genetically related strains of Campylobacter species. However, desirable genetically related strains can be differentiated by using other genotyping methods. We concluded that automated AFLP analysis is an attractive tool which can be used as a primary method for subtyping large numbers of Campylobacter strains and is extremely useful for epidemiological investigations.  相似文献   

9.
Prevalence and antimicrobial resistance of Campylobacter in US dairy cattle   总被引:1,自引:0,他引:1  
AIMS: To obtain an overview of the prevalence and antimicrobial resistance of Campylobacter in faeces of US dairy cows in 2002. METHODS AND RESULTS: Faeces from 1435 cows, representing 96 dairy operations in 21 US states, were collected for the culture of Campylobacter. A total of 735 Campylobacter strains were isolated (51.2% positive samples) with 94 operations positive (97.9%) for Campylobacter. From this collection, 532 isolates (473 Campylobacter jejuni and 59 Campylobacter coli) were randomly selected for susceptibility testing to eight antimicrobials: azithromycin, chloramphenicol, ciprofloxacin, clindamycin, erythromycin, gentamicin, nalidixic acid and tetracycline. The C. jejuni isolates exhibited resistance to tetracycline (47.4%), nalidixic acid (4.0%) and ciprofloxacin (2.5%), while the C. coli strains exhibited some resistance to all antimicrobials except chloramphenicol and ciprofloxacin. Only 3.6% of the C. jejuni isolates were resistant to two or more antimicrobials but 20.3% of the C. coli strains were multiresistant. CONCLUSIONS: On most operations, at least one cow was positive for Campylobacter and more than half of the cows sampled were shedding Campylobacter. The C. coli isolates had significantly higher levels of resistance to macrolides and to tetracycline compared with the C. jejuni strains, but were susceptible to ciprofloxacin. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated a high prevalence of Campylobacter on US dairy operations; however, US dairy cattle have not been recognized as a major source of human infection compared with poultry. Campylobacter coli appears to develop antimicrobial resistance more readily than C. jejuni from the same environment.  相似文献   

10.
Analysis of nucleic acid polymorphism in the flagellin genes of Campylobacter jejuni was used to investigate genetic diversity among Campylobacter spp. in a commercial broiler flock. Three hundred single colonies of C. jejuni were isolated from fecal samples collected weekly for 3 weeks immediately before slaughter. Both the flaA and flaB genes were amplified by PCR, and the PCR product was digested with the restriction enzyme AluI. The fragments generated were then analyzed by agarose gel electrophoresis. Among the 300 recovered isolates, five different restriction fragment length polymorphism profiles were observed. Three of these profiles were dominant during the course of the study, and the other two profiles were detected at low frequency. Analysis of genetic variation in C. jejuni over the course of an experimental infection lasting 7 weeks indicated that there was no obvious drift in the flagellin gene type. These findings demonstrate that a range of bacterial genotypes can constitute the bacterial population within a commercial poultry flock, with the most likely sources of these types being multiple environmental exposure and/or genetic drift within the population. This degree of diversity must be considered in epidemiological analyses which utilize genetic typing methods that investigate Campylobacter contamination of any food source, including poultry, to ensure that the total gene pool for C. jejuni is evaluated.  相似文献   

11.
Campylobacter jejuni (C. jejuni) is a leading cause of human bacterial enteritis worldwide with poultry products being a major source of C. jejuni contamination. The chicken is the natural reservoir of C. jejuni where bacteria colonize the digestive tract of poultry, but rarely cause symptoms of disease. To understand the systemic molecular response mechanisms to C. jejuni infection in chickens, total splenic RNA was isolated and applied to a whole genome chicken microarray for comparison between infected (I) and non-infected (N) chickens within and between genetic lines A and B. There were more total splenic host genes responding to the infection in resistant line A than in susceptible line B. Specifically, genes for lymphocyte activation, differentiation and humoral response, and Ig light and heavy chain were upregulated in the resistant line. In the susceptible line, genes for regulation of erythrocyte differentiation, hemopoiesis, and RNA biosynthetic process were all downregulated. An interaction analysis between genetic lines and treatment demonstrated distinct defense mechanisms between lines: the resistant line promoted apoptosis and cytochrome c release from mitochondria, whereas the susceptible line responded with a downregulation of both functions. This was the first time that such systemic defensive mechanisms against C. jejuni infection have been reported. The results of this study revealed novel molecular mechanisms of the systemic host responses to C. jejuni infection in chickens that warrant further investigation.  相似文献   

12.
AIMS: To apply and evaluate LG (LPS genes) genotyping, which is a genotyping method based on a cluster of genes involved in the synthesis of surface lipopolysaccharides (LPS) in Campylobacter species, for typing of Campylobacter jejuni isolates obtained from Danish broiler chickens. Furthermore, the LG genotyping method was used to study the genetic stability of four C. jejuni strains after gastrointestinal passage through experimentally infected chickens. METHODS AND RESULTS: In the present study, the LG genotyping method was modified with respect to the restriction enzymes used. To validate the method, 63 Penner serotype reference strains and 107 C. jejuni chicken isolates, representing the most common Penner serotypes of C. jejuni in Danish poultry, were selected for typing. The method was successfully used for typing all isolates and the LG genotype profiles were reproducible. There were no changes in the LG genotype of the C. jejuni strains obtained after experimental passage through chickens. CONCLUSIONS: All C. jejuni strains obtained from broiler chickens were typeable by the LG genotyping method. Application of the RsaI restriction enzyme improved the method in terms of ease and consistency of analyses and increase of discriminatory power. SIGNIFICANCE AND IMPACT OF THE STUDY: The LG genotyping method is a valuable tool for typing C. jejuni isolates obtained from poultry. However, the association between Penner serotyping based on passive haemagglutination of heat-stable antigens and LG genotyping was low when applied to poultry isolates. This is in contrast to previous studies on isolates of human origin that reported a high correlation between results obtained by the two typing methods (Shi et al. 2002).  相似文献   

13.
Campylobacter spp. are a significant contributor to the bacterial etiology of acute gastroenteritis in humans. Epidemiological evidence implicates poultry as a major source of the organism for human illness. However, the factors involved in colonization of poultry with Campylobacter spp. remain unclear. Determining colonization-associated factors at the proteome level should facilitate our understanding of Campylobacter spp. contamination of poultry. Therefore, proteomic analyses were utilized to identify expression differences between two Campylobacter jejuni isolates, a robust colonizer A74/C and a poor colonizing strain of the chicken gastrointestinal system designated NCTC 11168-PMSRU. Proteomic analyses by two-dimensional gel electrophoresis revealed the specific expression of an outer membrane-fibronectin binding protein, serine protease, and a putative aminopeptidase in the soluble portion of the robust colonizer A74C. Several proteins including a cysteine synthase and aconitate hydratase were detected specifically in the poor colonizer C. jejuni NCTC 11168-PMSRU isolate. Variation in the amino acid sequences resulting in different isoelectric points and relative mobility of the flagellin and C. jejuni major outer membrane (MOMP) protein were also detected between the two isolates. Western blotting of the bacterial proteins revealed the presence of two flagellin proteins in the poor colonizer versus one in the robust colonizing isolate, but no differences in MOMP. The results demonstrated that proteomics is useful for characterizing phenotypic variation among Campylobacter spp. isolates. Interestingly, different gene products potentially involved in robust colonization of chickens by Campylobacter spp. appear to conform to recently identified expression patterns in Biofilm or agar-adapted isolates.  相似文献   

14.
Preston broth and agar incubated at either 37 or 42 degrees C have been widely used to isolate campylobacters from foodstuffs. The consequences of using either incubation temperature were investigated. Retail packs of raw chicken (n = 24) and raw lamb liver (n = 30) were purchased. Samples were incubated in Preston broth at 37 and 42 degrees C and then streaked onto Preston agar and incubated as before. Two Campylobacter isolates per treatment were characterized. Poultry isolates were genotyped by random amplification of polymorphic DNA (RAPD), pulsed-field gel electrophoresis (PFGE), and flagellin PCR-restriction fragment length polymorphism, and lamb isolates were genotyped by RAPD only. In total, 96% of the poultry and 73% of the lamb samples yielded campylobacters. The lamb isolates were all Campylobacter jejuni, as were 96% of the poultry isolates, with the remainder being Campylobacter lari. The incubation temperature had no significant effect on the number of positive samples or on the species isolated. However, genotyping of the C. jejuni isolates revealed profound differences in the types obtained. Overall (from poultry and lamb), the use of a single incubation temperature, 37 degrees C, gave 56% of the total number of RAPD C. jejuni genotypes, and hence, 44% remained undetected. The effect was especially marked in the poultry samples, where incubation at 37 degrees C gave 47% of the PFGE genotypes but 53% were exclusively recovered after incubation at 42 degrees C. Thus, the incubation temperature of Preston media selects for certain genotypes of C. jejuni, and to detect the widest range, samples should be incubated at both 37 and 42 degrees C. Conversely, genotyping results arising from the use of a single incubation temperature should be interpreted with caution.  相似文献   

15.
To determine the significance of poultry and bovine as infectious sources of Campylobacter jejuni in Japan, the serotype distribution and pulsed-field gel electrophoresis (PFGE) patterns of poultry and bovine isolates were compared with those of isolates from patients with diarrhea in Akita (Japan). Serotypes O:2 and O:4-complex were common in human, poultry, and bovine isolates, and serotype O:23,36,53 was common in human and bovine isolates. SmaI PFGE patterns of isolates belonging to these serotypes were generated. Eight PFGE patterns were shared by poultry and human isolates and three patterns were shared by human and bovine isolates. Further analysis of the isolates having the same SmaI PFGE pattern by KpnI PFGE confirmed that four patterns and two patterns were still shared by poultry and human isolates, and bovine and human isolates, respectively. Thus, serotypic and genotypic data indicated a possible link between sporadic human campylobacteriosis and C. jejuni from retail poultry and bovine bile and feces, suggesting that bovine serves as an infectious source of C. jejuni in Japan, as is observed in other countries.  相似文献   

16.
空肠弯曲菌(Campylobacter jejuni)是最常见的食源性病原菌之一。本研究采用微量肉汤稀释法对分离得到的139株空肠弯曲菌(117株为禽源样本分离株,22株为人源样本分离株)进行耐药性检测。通过对最小抑菌浓度(MIC)的判定结果得出:120株(86. 33%)空肠弯曲菌分离株对6类9组临床常用的抗生素表现出不同程度的耐药,其中禽源空肠弯曲菌耐药率为83. 76%,22株人源空肠弯曲菌均表现出耐药性。对喹诺酮类抗生素表现出高度耐药(环丙沙星80. 58%,萘啶酸77. 70%);对四环素类表现为中等耐药(四环素53. 24%);对部分大环内酯类、氨基糖苷类、林可酰胺类表现为低耐药(庆大霉素7. 19%,阿奇霉素5. 76%,克林霉素6. 47%);对酰胺醇类、部分大环内酯类表现为敏感(氟苯尼考0%,红霉素0%、泰利霉素0%)。139株空肠弯曲菌共产生14种耐药谱型,以TET-CIP-NAL谱型最多,占比38. 13%,耐三重及以上抗生素的多重耐药菌株占比53. 24%。禽源菌株中多重耐药占比46. 15%,人源菌株中多重耐药占比90. 91%。研究结果显示空肠弯曲菌耐药现状不容乐观,尤其对喹诺酮类与四环素类抗生素耐药性较为突出,且过半数菌株为多重耐药。本研究为食源性空肠弯曲菌的防控及临床用药提供参考。  相似文献   

17.
The prevalence of campylobacters and arcobacters in broiler chickens   总被引:4,自引:2,他引:2  
Chicken carcasses from a supermarket and from a poultry abattoir were examined using methods designed to isolate as many strains of campylobacters and related organisms as possible. Strains of arcobacter, but no campylobacters, were isolated from every carcass after enrichment. Campylobacter jejuni subsp. jejuni was isolated from all carcasses examined by direct plating and other Campylobacter -like strains were isolated from nine out of 15 abattoir carcasses by direct plating but not after enrichment. Only the Camp. jejuni subsp. jejuni strains could be identified to species level using a readily available identification scheme and/or a commercial identification kit. Examination of caecal contents from the 15 abattoir poultry yielded Camp. jejuni subsp. jejuni and Campylobacter -like strains from 15 and eight by direct plating, and from six and nine after enrichment, respectively. Four sites in the intestine of the abattoir birds (60 samples) were examined for arcobacters and only one strain was isolated. This indicates that arcobacters are probably not normal inhabitants of the poultry intestine. Poultry is a rich source of other campylobacteria besides the thermophilic Campylobacter spp.  相似文献   

18.
A real-time PCR assay was developed for the quantitative detection of Campylobacter jejuni in foods after enrichment culture. The specificity of the assay for C. jejuni was demonstrated with a diverse range of Campylobacter species, related organisms, and unrelated genera. The assay had a linear range of quantification over six orders of magnitude, and the limit of detection was approximately 12 genome equivalents. The assay was used to detect C. jejuni in both naturally and artificially contaminated food samples. Ninety-seven foods, including raw poultry meat, offal, raw shellfish, and milk samples, were enriched in blood-free Campylobacter enrichment broth at 37 degrees C for 24 h, followed by 42 degrees C for 24 h. Enrichment cultures were subcultured to Campylobacter charcoal-cefoperazone-deoxycholate blood-free selective agar, and presumptive Campylobacter isolates were identified with phenotypic methods. DNA was extracted from enrichment cultures with a rapid lysis method and used as the template in the real-time PCR assay. A total of 66 samples were positive for C. jejuni by either method, with 57 samples positive for C. jejuni by subculture to selective agar medium and 63 samples positive in the real-time PCR assay. The results of both methods were concordant for 84 of the samples. The total time taken for detection from enrichment broth samples was approximately 3 h for the real-time PCR assay, with the results being available immediately at the end of PCR cycling, compared to 48 h for subculture to selective agar. This assay significantly reduces the total time taken for the detection of C. jejuni in foods and is an important model for other food-borne pathogens.  相似文献   

19.
The antibacterial effects of nine lactic acid bacteria (LAB) against Campylobacter jejuni were investigated by using agar gel diffusion and co-culture assays. Some differences were recorded between the inhibition effects measured with these two methods. Only two LAB, Lb. pentosus CWBI B78 and E. faecium THT, exhibited a clear anti- Campylobacter activity in co-culture assay with dehydrated poultry excreta mixed with ground straw (DPE/GS) as the only growth substrate source. It was observed that the supplementation of such medium with a cellulase A complex (Beldem S.A.) enhanced the antimicrobial effect of both LAB strains. The co-culture medium acidification and the C. jejuni were positively correlated with the cellulase A concentration. The antibacterial effect was characterized by the lactic acid production from the homofermentative E. faecium THT and the lactic and acetic acids production from the heterofermentative Lb. pentosus CWBI B78. The antagonistic properties of LAB strains and enzyme combination could be used in strategies aiming at the reduction of Campylobacter prevalence in the poultry production chain and consequently the risk of human infection.  相似文献   

20.
Campylobacter coli is an infrequently studied but important food-borne pathogen with a wide natural distribution. We investigated its molecular epidemiology by use of amplified fragment length polymorphism (AFLP)-based genotyping and Penner serotyping. Serotype reference strains and 177 Danish isolates of diverse origin identified by routine phenotyping as C. coli were examined. Molecular tools identified some 12% of field isolates as Campylobacter jejuni, emphasizing the need for improved identification methods in routine laboratories. Cluster analysis of AFLP profiles of 174 confirmed C. coli isolates revealed a difference in the distribution of isolates from pig and poultry (chicken, duck, turkey, and ostrich) species and indicated the various poultry species, but not pigs, to be likely sources of human C. coli infection. A poor correlation was observed between serotyping and AFLP profiling, suggesting that the former method has limited value in epidemiological studies of this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号