首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past few years significant progress has been made in the extension of storage time for red blood cells (RBCs). Albeit this, membrane still undergoes damage during conservation under blood bank conditions, reducing red cell viability following transfusion. Consequently in this study, we evaluated the presence of senescence indices (appearing on RBCs during in vivo aging) on blood bank stored RBCs, more precisely the 4.1a/4.1b ratio and the binding of autologous immunoglobulins. Although not significant, a slight increase (0.995 +/- 0.070 to 1.008 +/- 0.058) was observed in the 4.1a/4.1b ratio during the first three weeks of storage. A rapid and significant (p less than 0.001) increase in the number of cell-bound IgGs (91 +/- 22 to 913 +/- 92), following incubation with purified autologous IgGs, was observed in the first days of storage. Thus, following transfusion, binding of autologous IgGs to stored RBCs could influence post-transfusion viability.  相似文献   

2.
We depleted reticulocytes from erythrocytes of both sickle cell disease (SCD) subjects and healthy controls by four methods: fluorescence-activated cell sorting (FACS), Miltenyi immunomagnetic depletion (MACS), a combination of these methods (FACS + MACS) and Percoll density separation. The efficiency of these methods was assessed by new methylene blue staining and manual enumeration of the reticulocytes. FACS sorted erythrocytes from reticulocytes based on size and granularity, as well as the absence of dsDNA staining. MACS depleted reticulocytes from erythrocytes based on the immunoaffinity to CD36 and CD71. Reticulocytes from healthy controls were depleted to 相似文献   

3.
Acetylcholinesterase (AChE; EC 3.1.1.7) extracted in 1% Triton X-100 from rabbit brain was purified 2,000-fold by chromatography on agarose conjugated with a monoclonal antibody directed against human red blood cell cholinesterase. After elution from the immunoadsorbent with pH 11 buffer, the preparation was purified further by affinity chromatography on phenyltrimethylammonium-Sepharose 4B with decamethonium elution. Overall yield of purified enzyme was 37% of the AChE originally solubilized, with a specific activity of 2,950 units/mg protein. Electrophoresis under reducing conditions in 7.5% sodium dodecyl sulfate polyacrylamide gels revealed only one silver-staining polypeptide band. A streamlined purification procedure enabled the isolation of electrophoretically homogeneous AChE to be completed in fewer than 7 days, at yields exceeding 50%. Electrophoretic analysis of purified AChE indicated an apparent MW of 71,000 for the monomeric subunit. Gel filtration and sucrose density gradient centrifugation in the presence of Triton X-100 showed little difference between the properties of the native and the purified enzyme. The molecular mass of the main species was estimated from the gel filtration and sedimentation data to be 280,000 daltons. Kinetic parameters of the purified protein (Km = 0.16 +/- 0.01 mM) were close to those of the native enzyme (Km = 0.12 +/- 0.01 mM) when examined with acetylthiocholine iodide as substrate. The two-step immunopurification procedure presented in this communication offers a convenient route to homogeneous neural AChE in quantities useful for detailed biochemical and immunochemical study.  相似文献   

4.
The ATPase activity of the plasma membrane Ca2+ pump (PMCA) has been reported to be inhibited by exposure of red blood cell (RBC) PMCA preparations to high glucose concentrations. It has been claimed that this effect could have potential pathophysiological relevance in diabetes. To ascertain whether high glucose levels also affect PMCA transport function in intact RBCs, Ca2+ extrusion by the Ca2+-saturated pump [PMCA maximal velocity (V(max))] was measured in human and rat RBCs exposed to high glucose in vivo or in vitro. Preincubation of normal human RBCs in 30-100 mM glucose for up to 6 h had no effect on PMCA V(max). The mean V(max) of RBCs from 15 diabetic subjects of 12.9 +/- 0.7 mmol. 340 g Hb(-1). h(-1) was not significantly different from that of controls (14.3 +/- 0.5 mmol. 340 g Hb(-1). h(-1)). Similarly, the PMCA V(max) of RBCs from 11 streptozotocin-diabetic rats was not affected by plasma glucose levels more than three times normal for 6-8 wk. Thus exposure to high glucose concentrations does not affect the ability of intact RBCs to extrude Ca2+.  相似文献   

5.
N(G),N(G)-dimethyl-L-arginine (asymmetric dimethylarginine or ADMA) and N(G)-monomethyl-L-arginine (L-NMMA) are post-translationally synthesized amino acids of nuclear proteins. Upon release during protein turnover, they are not used in protein synthesis, but are excreted or metabolized by dimethylarginine dimethylaminohydrolase (DDAH) found in many tissues. DDAH is present in monocytic and polynuclear cells of blood, but no report has appeared of its presence in red blood cells (RBCs). Because methylated arginines can inhibit nitric oxide synthase (NOS) and elevations are reported in several diseases, we explored whether RBCs express this enzyme. DDAH is present in RBCs as supported by hydrolysis of both ADMA and L-NMMA, but not symmetric dimethylarginine, and by immunoprecipitation/Westem blot using a specific monoclonal antibody to human DDAH. In a pilot study of end-stage renal disease (ESRD) patients, RBC DDAH activity with ADMA as substrate correlated inversely with age (p = 0.005) and enzyme activities were higher in patients with greater diastolic blood pressure drops during hemodialysis (p = 0.02). Similar correlations were found with white cell DDAH activity. Thus, human RBCs can hydrolyze methylated arginines. These findings indicate the RBC could be used to assess the status of DDAH in various disease states.  相似文献   

6.
We have previously demonstrated that the loss of glutathione (GSH) and GSH-peroxidase (GSH-PX) in banked red blood cells (RBCs) is accompanied by oxidative modifications of lipids, proteins and loss of membrane integrity[1]. The objective of this study was to determine whether artificial increases in antioxidant (GSH) or antioxidant enzyme (catalase) content could protect membrane damage in the banked RBCs following an oxidant challenge. RBCs stored at 1-6°C for 0, 42 and 84 days in a conventional additive solution (Adsol®) were subjected to oxidative stress using ferric/ascorbic acid (Fe/ASC) before and after enriching them with GSH or catalase using a hypotonic lysis-isoosmotic resealing procedure. This lysis-resealing procedure in the presence of GSH/catalase raised intracellular GSH and catalase concentrations 4-6 fold, yet produced only a small reduction in mean cell volume (MCV), mean cell hemoglobin (MCH) and mean cell hemoglobin concentrations (MCHC). Indicators of oxidative stress and membrane integrity were measured, including acetylcholinesterase (AChE) activity, GSH concentration, phosphatidylserine (PS) externalization (prothrombin-converting activity) and transmembrane lipid movements (14C-lyso phosphatidylcholine flip-flop and PS transport). GSH-enrichment protected AChE activity in fresh (0 day) and stored (42 and 84 days) RBCs from Fe/ASC oxidation by 10, 23 and 26%, respectively, compared with not-enriched controls. Following oxidative stress, the rate of transbilayer lipid flip-flop did not increase in fresh cells, but increased 9.3% in 42-day stored cells. Phosphatidylserine exposure, as measured by prothrombinase activity, increased 2.4-fold in fresh and 5.2-fold in 42-day stored cells exposed to Fe/ASC. Previous studies have shown that 42-day storage causes a moderate decrease in PS transport (∼ 50 %), whereas transport rates declined by up to 75% in stored RBCs when challenged with Fe/ASC. GSH-enrichment prevented the increase in passive lipid flip-flop and the increase in prothrombinase activity, but offered no protection against oxidative damage of PS transport. In contrast to these effects, catalase-enrichment failed to protect GSH levels and AChE activity upon oxidative stress. Membrane protein thiol oxidation was assessed by labeling reactive protein thiols with 5-acetalamidofluorescein followed by immunoblotting with antifluorescein antibodies. Significant oxidation of membrane proteins was confirmed by a greater loss of thiols in stored RBCs than in fresh RBCs. These results demonstrate that it may be possible to prevent storage-mediated loss of AChE, increased lipid flip-flop, and increased PS exposure, by maintaining or increasing GSH levels of banked RBCs.  相似文献   

7.
The hypothesis was tested that exercise-induced changes in plasma composition stimulate unidirectional K(+) transport (J(in)K) in human red blood cells (RBCs). Ten men performed two 30-s high-intensity leg-cycling tests separated by 4 min of rest. Antecubital venous blood was sampled before exercise and at the end of the second exercise bout. RBCs were separated from true exercise plasma, (42)K was added to plasma, and RBC K(+) transport was studied in vitro at 37 degrees C. In the second part of the study, blood from nine healthy men studied in vitro at 37 degrees C was used to test the hypothesis that exercise-simulated (ES) plasma stimulates net K(+) transport and J(in)K (measured using (86)Rb) in human RBCs. The J(in)K of resting RBCs added to true exercise plasma was 1,574 +/- 200 (SE) micromol. h(-1). l(-1) vs. 1,236 +/- 256 micromol. h(-1). l(-1) in true resting plasma at 2 min (controls). In true exercise and ES plasma, J(in)K was increased through activation of the ouabain-sensitive Na(+)-K(+) pump and the bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransporter. Increases in plasma osmolality and K(+), H(+), and epinephrine concentrations independently and in combination stimulated K(+) transport into human RBCs. In a third series of experiments, in which ES plasma K(+) concentration was continuously measured during the first 5 min of incubation of RBCs, a 1.6 +/- 0.3 mmol/l decrease in plasma K(+) concentration occurred during the first 2 min. It is concluded that RBCs transport K(+) at elevated rates in response to exercise-induced changes in plasma composition.  相似文献   

8.
This study determined and compared rates and mechanisms of lactate transport in red blood cells (RBCs) of persons with 1) sickle cell disease (HbSS), 2) sickle cell trait (HbAS), and 3) a control group (HbAA). Blood samples were drawn from 30 African-American volunteers (10 HbSS, 10 HbAS, 10 HbAA). Lactate influx into RBCs was measured by using [14C]lactate at six (2, 5, 10, 15, 25, and 40 mM) unlabeled lactate concentrations. The monocarboxylate transporter pathway was blocked by p-chloromercuriphenylsulfonic acid to determine its percent contribution to total lactate influx. Generally, total lactate influx into RBCs from the HbSS group was significantly greater than influx into RBCs from HbAS or HbAA, with no difference between HbAS and HbAA. Faster influx into HbSS RBCs was attributed to increased monocarboxylate transporter activity [increased apparent Vmax (V'max)]. V'max (4.7 +/- 0.6 micromol x ml(-1) x min(-1)) for HbSS RBCs was significantly greater than V'max of HbAS RBCs (2.9 +/- 1.5 micromol x ml(-1) x min(-1)) and HbAA RBCs (2.0 +/- 0.5 micromol x ml(-1) x min(-1)). Km (42.8 +/- 8 mM) for HbSS RBCs was significantly greater than Km (27 +/- 12 mM) for HbAA RBCs. We suspect that elevated erythropoietin levels in response to chronic anemia and/or pharmacological treatment (erythropoietin injections, hydroxyurea ingestion) is the underlying mechanism for increased lactate transport capacity in HbSS RBCs.  相似文献   

9.
A markedly reduced blood flow, an elevation of hematocrit and an increased aggregability of erythrocytes [red blood cells (RBCs)] are risk factors for venous thrombus formation (intravascular blood coagulation). However, these risk factors alone seem to be insufficient to stimulate the coagulation cascade in the absence of a primary triggering mechanism. In this paper, our rheological and biochemical studies on blood coagulation, especially focusing on procoagulant activity of RBCs, are summarized. It is shown that the intrinsic coagulation pathway is triggered by the activation of factor IX (F-IX) by RBCs. The F-IX-activating enzyme in normal human erythrocyte (RBC) membranes was purified, identified and characterized. The activation of F-IX by RBCs was enhanced by a decrease in flow shear rate and an elevation in hematocrit. The procoagulant ability of RBCs and coagulation of blood obtained from individuals with a relatively high level of hypercoagulability were enhanced compared with those for normals. The studies demonstrated a new triggering mechanism for coagulation or thrombus formation that may occur under stagnant flow conditions.  相似文献   

10.
This study investigated 1) red blood cells (RBC) rigidity and 2) lactate influxes into RBCs in endurance-trained athletes with and without exercise-induced hypoxemia (EIH). Nine EIH and six non-EIH subjects performed a submaximal steady-state exercise on a cyclo-ergometer at 60% of maximal aerobic power for 10 min, followed by 15 min at 85% of maximal aerobic power. At rest and at the end of exercise, arterialized blood was sampled for analysis of arterialized pressure in oxygen, and venous blood was drawn for analysis of plasma lactate concentrations and hemorheological parameters. Lactate influxes into RBCs were measured at three labeled [U-14C]lactate concentrations (1.6, 8.1, and 41 mM) on venous blood sampled at rest. The EIH subjects had higher maximal oxygen uptake than non-EIH (P < 0.05). Total lactate influx was significantly higher in RBCs from EIH compared with non-EIH subjects at 8.1 mM (1,498.1 +/- 87.8 vs. 1,035.9 +/- 114.8 nmol.ml(-1).min(-1); P < 0.05) and 41 mM (2,562.0 +/- 145.0 vs. 1,618.1 +/- 149.4 nmol.ml(-1).min(-1); P < 0.01). Monocarboxylate transporter-1-mediated lactate influx was also higher in EIH at 8.1 mM (P < 0.05) and 41 mM (P < 0.01). The drop in arterial oxygen partial pressure was negatively correlated with total lactate influx measured at 8.1 mM (r = -0.82, P < 0.05) and 41 mM (r = -0.84, P < 0.05) in the two groups together. Plasma lactate concentrations and hemorheological data were similar in the two groups at rest and at the end of exercise. The results showed higher monocarboxylate transporter-1-mediated lactate influx in the EIH subjects and suggested that EIH could modify lactate influx into erythrocyte. However, higher lactate influx in EIH subjects was not accompanied by an increase in RBC rigidity.  相似文献   

11.
Plasma butyrylcholinesterase (BChE) hydrolyzes ester-containing compounds such as succinylcholine, as well as acting as a scavenger against neurotoxic organophosphates (OPs). We previously found that Nippostrongylus brasiliensis infection makes rats more susceptible to OP toxicity by decreasing serum paraoxonase-1 (PON1) activity. In the present study, we examined the effects of N.brasiliensis infection on acetylcholinesterase (AChE) activity in plasma, red blood cells (RBCs), brain and diaphragm, as well as serum PON1 activity, in rats at day 7 after infection. N.brasiliensis infection significantly decreased plasma BChE and PON1 activities without significantly altering AChE activity in RBCs, brain and diaphragm. These results provide further insight into the unusual deleterious effects of intestinal nematode infections on body homeostasis.  相似文献   

12.
We investigated the interaction of the cesium ion (Cs(+)) with the anionic intracellular components of human red blood cells (RBCs); the components studied included 2,3-bisphosphoglycerate (BPG), ADP, ATP, inorganic phosphate (P(i)), carbonmonoxy hemoglobin (COHb), and RBC membranes. We used spin-lattice (T(1)) and spin-spin (T(2)) (133)Cs NMR relaxation measurements to probe Cs(+) binding, and we found that Cs(+) bound more strongly to binding sites in BPG and in RBC membranes than in any other intracellular component in RBCs at physiologic concentrations. By using James-Noggle plots, we obtained Cs(+) binding constants per binding site in BPG (66 +/- 8 M(-1)), ADP (19 +/- 1 M(-1)), ATP (25 +/- 3 M(-1)), and RBC membranes (55 +/- 2 M(-1)) from the observed T(1) values. We also studied the effect of Cs(+) on the oxygen (O(2)) affinity of purified Hb and of Hb in intact RBCs in the absence and in the presence of BPG. In the absence of BPG, the O(2) affinity of Hb decreased upon addition of Cs(+). However, in the presence of BPG, the O(2) affinity of Hb increased upon addition of Cs(+). The O(2) affinity of Cs(+)-loaded human RBCs was larger than that of Cs(+)-free cells at the same BPG level. (31)P NMR studies on the pH dependence of the interaction between BPG and Hb indicated that the presence of Cs(+) resulted in a smaller fraction of BPG available to bind to the cleft of deoxyHb. Our NMR and O(2) affinity data indicate that a strong binding site for Cs(+) in human RBCs is BPG. A partial mechanism for Cs(+) toxicity might arise from competition between Cs(+) and deoxyHb for BPG, thereby increasing oxygenation of Hb in RBCs, and thus decreasing the ability of RBCs to give up oxygen in tissues. The presence of Cs(+) at 12.5 mM in intact human RBCs containing BPG at normal concentrations did not, however, alter significantly the O(2) affinity of Hb, thus ruling out the possibility of Cs(+)-BPG interactions accounting for Cs(+) toxicity in this cell type.  相似文献   

13.
Recent studies have suggested that Rap1 and Rap2 small GTP-binding proteins are both expressed in human red blood cells (RBCs). In this work, we carefully examined the expression of Rap proteins in leukocytes- and platelets-depleted RBCs, whose purity was established on the basis of the selective expression of the beta2 subunit of the Na+/K+ -ATPase, as verified according to the recently proposed "beta-profiling test" [J.F. Hoffman, A. Wickrema, O. Potapova, M. Milanick, D.R. Yingst, Na pump isoforms in human erythroid progenitor cells and mature erythrocytes, Proc. Natl. Acad. Sci. U. S. A. 99 (2002) 14572-14577]. In pure RBCs preparations, Rap2, but not Rap1 was detected immunologically. RT-PCR analysis of mRNA extracted from highly purified reticulocytes confirmed the expression of Rap2b, but not Rap2a, Rap2c, Rap1a or Rap1b. In RBCs, Rap2 was membrane-associated and was rapidly activated upon treatment with Ca2+/Ca2+ -ionophore. In addition, Rap2 segregated and was selectively enriched into microvesicles released by Ca2+ -activated RBCs, suggesting a possible role for this GTPase in membrane shedding.  相似文献   

14.
Nucleotidase activities resembling subclass I and subclass II of human pyrimidine 5'-nucleotidases (P5N) were detected in chicken red blood cells (RBCs). In chicken RBCs from untreated controls, the activity of the subclass II enzyme was about one third of that of subclass I enzyme, whereas that ratio was approximately 5:1 in rat or human RBCs. The subclass I activity in chicken RBCs was increased 5- to 6-fold upon erythropoietic induction by phenylhydrazine administration, but the subclass II activity did not increase under these conditions. The subclass I enzyme was purified to near homogeneity. Its molecular mass was about 35 kDa as estimated by gel filtration and SDS-polyacrylamide gel electrophoresis. Its N-terminal 12 amino acids, PEFQKKTVHIKD, were also determined. The catalytic properties of the subclass I enzyme were very similar to those of the human enzyme with regard to substrate (preferential hydrolysis of CMP, dCMP, UMP), Km values, optimum pH, and metal ion requirements. Antibodies against chicken P5N subclass I were raised in rats. The chicken P5N-I as well as the rat P5N-I proteins could be detected by antibodies in Western blot analyses, but not the P5N-II proteins. These findings indicate that P5N subclass I may have an important function in chicken erythropoiesis.  相似文献   

15.
The present study was designed to determine the effects of (i) phosphoenolpyruvate (PEP) treatment of red blood cells (RBCs) previously cold stored for a prolonged period in a liquid medium and (ii) the freezing of these treated cells in glycerol. RBCs stored for 21 days at 4 degrees C were incubated for 30 min at 37 degrees C with rejuvenant solution containing 50 mM PEP, 60 mM mannitol, 30 mM sodium chloride, 25 mM glucose, and 1 mM adenine, pH 6.0, and then frozen at -80 degrees C for 4 weeks. Red cell recovery as frozen and thawed red cells (FTRCs) after deglycerolization was increased to 80 +/- 4% compared to 43 +/- 9% in units without rejuvenation; the percentage of PEP-treated FTRCs was similar to the percentage of FTRCs recovered from fresh RBCs within 5 days after donation. Incubation of RBCs with PEP solution restored ATP and 2,3-DPG to levels seen in fresh RBCs, and also facilitated transformation of crenated RBCs to discocytes. These results indicate that maximum recovery of viable RBCs can be attained when FTRCs are processed from cells stored in the frozen state after they had been rejuvenated with PEP even after prolonged liquid storage.  相似文献   

16.
The reticulocytes and the ageing red blood cells (RBCs) namely young (Y), middle-aged (M) and old RBCs (O) of female Wistar rats from different groups such as control animals (C), controls treated with vanadate (C + V), alloxan-induced diabetic (D), diabetic-treated with insulin (D + I) and vanadate (D + V), were fractionated on a percoll/BSA gradient. The following enzymes were measured-hexokinase (HK), glutathione peroxidase (GSH-Px), glutathione reductase (GSSG-R), glutathione-s-transferase (GST), alanine aminotransferase ΜlaAT), aspartate aminotransferase ΜsAT) and arginase in the hemolysates of all the RBCs fractions. Decreases in the activity of HK and AsAT by about 70%, arginase and GSH-Px by 30% in old RBCs were observed in comparison to reticulocytes of control animals. Increases in the activity of GSSG-R by 86%, AlaAT by more than 400% and GST by 70% were observed in old RBCs in comparison to reticulocytes of control animals. Alloxan diabetic animals showed a further decrease in the activities of HK in Y RBCs by 37%, M RBCs by 39% and O RBCs by 32%, GSH-Px activity in Y RBCs by 13%, M RBCs by 20% and O RBCs by 33% and GST activity in Y RBCs by 14%, M RBCs by 42% and O RBCs by 60% in comparison to their corresponding cells of control animals. An increase in the activity of all the enzymes studied was also observed in reticulocytes of diabetic animals in comparison to reticulocytes of controls. The GSSG-R activity was found to be increased in Y RBCs by 49%, M RBCs by 67% and O RBCs by 64% as compared to the corresponding age-matched cells of control animals. The activity of arginase also decreased in Y RBCs by about10%, M RBCs by 20% and O RBCs by 30% in comparison to the age-matched cells of control animals. A decrease in the activity of AsAT in Y and M RBCs by 30%, and O RBCs by 25% was observed in diabetic animals in comparison to the agematched cells of control animals. The activity of AlaAT was found to be decreased by more than 10% in Y and M RBCs and 25% in O RBCs of diabetic animals in comparison to the age-matched cells of control animals. Insulin administration to diabetic animals reversed the altered enzyme activity to control values. Vanadate treatment also reversed the enzyme levels except for that of GST in old cells  相似文献   

17.
We have previously demonstrated that the loss of glutathione (GSH) and GSH-peroxidase (GSH-PX) in banked red blood cells (RBCs) is accompanied by oxidative modifications of lipids, proteins and loss of membrane integrity[1]. The objective of this study was to determine whether artificial increases in antioxidant (GSH) or antioxidant enzyme (catalase) content could protect membrane damage in the banked RBCs following an oxidant challenge. RBCs stored at 1–6°C for 0, 42 and 84 days in a conventional additive solution (Adsol®) were subjected to oxidative stress using ferric/ascorbic acid (Fe/ASC) before and after enriching them with GSH or catalase using a hypotonic lysis-isoosmotic resealing procedure. This lysis-resealing procedure in the presence of GSH/catalase raised intracellular GSH and catalase concentrations 4–6 fold, yet produced only a small reduction in mean cell volume (MCV), mean cell hemoglobin (MCH) and mean cell hemoglobin concentrations (MCHC). Indicators of oxidative stress and membrane integrity were measured, including acetylcholinesterase (AChE) activity, GSH concentration, phosphatidylserine (PS) externalization (prothrombin-converting activity) and transmembrane lipid movements (14C-lyso phosphatidylcholine flip-flop and PS transport). GSH-enrichment protected AChE activity in fresh (0 day) and stored (42 and 84 days) RBCs from Fe/ASC oxidation by 10, 23 and 26%, respectively, compared with not-enriched controls. Following oxidative stress, the rate of transbilayer lipid flip-flop did not increase in fresh cells, but increased 9.3% in 42-day stored cells. Phosphatidylserine exposure, as measured by prothrombinase activity, increased 2.4-fold in fresh and 5.2-fold in 42-day stored cells exposed to Fe/ASC. Previous studies have shown that 42-day storage causes a moderate decrease in PS transport (~ 50 %), whereas transport rates declined by up to 75% in stored RBCs when challenged with Fe/ASC. GSH-enrichment prevented the increase in passive lipid flip-flop and the increase in prothrombinase activity, but offered no protection against oxidative damage of PS transport. In contrast to these effects, catalase-enrichment failed to protect GSH levels and AChE activity upon oxidative stress. Membrane protein thiol oxidation was assessed by labeling reactive protein thiols with 5-acetalamidofluorescein followed by immunoblotting with antifluorescein antibodies. Significant oxidation of membrane proteins was confirmed by a greater loss of thiols in stored RBCs than in fresh RBCs. These results demonstrate that it may be possible to prevent storage-mediated loss of AChE, increased lipid flip-flop, and increased PS exposure, by maintaining or increasing GSH levels of banked RBCs.  相似文献   

18.
A new type of agarose bead, superporous agarose, was used as a gel support for immobilization of human red blood cells (RBCs) mediated by wheat germ lectin. The number of immobilized cells was similar to that obtained with commercial wheat germ lectin-agarose but the cell stability appeared to be superior. This allowed improved frontal affinity chromatographic analyses of cytochalasin B (CB)-binding to the glucose transporter GLUT1 which established a ratio of one CB-binding site per GLUT1 dimer for both plain RBCs or those treated with different poly amino acids. The measured dissociation constants, 70+/-14 nM for CB and 12+/-3 mM for glucose binding to GLUT1, are similar to those reported earlier.  相似文献   

19.
Sialate pyruvate-lyases, also known as sialate aldolases (EC 4.1.3.3), reversibly catalyse the cleavage of free N-acetylneuraminic acids to form pyruvate and N-acetylmannosamine. These enzymes are widely distributed and are present in numerous pro- and eukaryotic cells, in which they are localized only in the cytosol. They play an important role in the regulation of sialic acid metabolism by controlling the intracellular concentration of sialic acids of biosynthetic or exogenous origin, thus preventing the accumulation of toxic levels of this sugar. Application of an original colorimetric micromethod for N-acetylmannosamine determination, as well as the use of [4,5,6,7,8,9-14C]N-acetylneuraminic acid, led us to evidence a cytosolic neuraminate aldolase activity in human red blood cells (RBCs) and then to define the main characteristics of this enzyme: Michaelis-Menten type, K(m:) 1.4 +/- 0.05 mM, optimal pH: 7.6 +/- 0.2, optimal temperature: 70 +/- 2 degrees C, inhibition by heavy metals: Ag(+) and Hg(++). These enzyme parameters are close to those of the bacterial and mammalian aldolases described up to now. At the moment, the presence of sialate pyruvate-lyase in the cytosol of red blood cells remains an enigma.  相似文献   

20.
In vitro effects of omeprazole, morphine sulphate, remifentanyl, ketamine and vankomycin were investigated on human red blood cell glucose-6 phosphate dehydrogenase (G-6PD) (E.C. 1.1.1.49) enzyme activity purified from human red blood cell by 2', 5'ADP-Sepharose 4B affinity gel. The obtained I50 values of omeprazole, morphine, remifentanil, ketamine and vankomycin were 3.24, 43.58, 97.6, 64.16 and 0.903 mM, respectively and the Ki constants for omeprazole, morphine and vankomycin were 8.22 +/- 2.055, 25.93 +/- 6.482, and 2.71 +/- 0.677 mM, respectively and they were non competitive inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号