首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In experiments with audiogenic seizures in DBA/2 mice, we observed that several socalled benzodiazepine receptor antagonists exhibited either anticonvulsive (Ro 15-1788, PrCC) or proconvulsive (FG 7142, beta-CCE, CGS 8216) effects at high receptor occupancy (17-85%), as compared to benzodiazepines and DMCM which had anticonvulsive and proconvulsive actions, respectively, at very low receptor occupancy (less than 10%). Sensitive distinction between benzodiazepine receptor ligands with low anticonvulsive efficacy (partial agonists) and ligands with low proconvulsive, and maybe anxiogenic, efficacy (partial inverse agonists) can thus be obtained in sound seizure susceptible mice.  相似文献   

3.
4.
5.
6.
The Spontaneously Epileptic Rat (SER), a double-mutant for tremor and zitter mutations, shows spontaneous occurrences of absence-like and tonic seizures. Several lines of evidence suggest that the combined effect of Aspa and Atrn mutations is the most likely cause of the epileptic phenotype of the SER. To address this issue, we produced a new double-mutant mouse line carrying both homozygous Aspa-knockout and Atrn(mg-3J) mutant alleles. The Aspa/Atrn double-mutant mice exhibited absence-like and tonic seizures that were characterized by the appearance of 5-7 Hz spike-wave-like complexes and low voltage fast waves on EEGs. These results demonstrate directly that the simultaneous loss of the Aspa and Atrn gene functions causes epileptic seizures in the mouse and suggest that both Aspa and Atrn deficiencies might be responsible for epileptic seizures in the SER.  相似文献   

7.
An examination of the manifestations of convulsive seizure activity in hundreds of inbred audiosensitive O'Grady mice exposed to auditory signals revealed that, apart from the maximal manifestation itself, the lag time prior to its obset is a suitable criterion for evaluation of the seizure response. Following exposure of a random population of 100 inbred mice to a fixed signal of average intensity which led to approximately 60% of tonic seizures, a scale of weighted values was designed. Animals responding with the maximal tonic seizures were subdivided further according to the lag time to the onset of response. Each group was assigned a value number. A scale of responses of individual mice, ranging from 1 to 10 points, approximately equivalent in terms of distribution of responses, was constructed thereby; individual results could be summed up for group totals. The statistical validity of the scale was proved in 583 typical inbred mice picked at random. Its usefulness was established when the evoked response of a group increased with increased stimulus intensity, the relationship being nearly linear between 69 and 85 dB, at 22 KHz. Group responses to signals of fixed sound pressure at frequencies ranging from 8 to 17 KHz were found to follow a bell-shaped response curve with peak seizure activity near 13 KHz, the frequency corresponding to the greatest mouse hearing acuity.  相似文献   

8.
Specific ethanol withdrawal seizures in genetically selected mice   总被引:2,自引:0,他引:2  
We are selectively breeding mice prone (WSP) and resistant (WSR) to ethanol withdrawal seizures assessed by handling induced convulsions (HIC). The possibility that differences between the lines in HIC scores are a result of differences in general CNS excitability not specific to ethanol withdrawal was examined. Using treatments which produce generalized seizures (electroconvulsive shock, strychnine, and flurothyl) and gamma amino-butyric acid (GABA) antagonists (picrotoxin, bicuculline, and pentylentetrazol), the ED50 for seizures was determined in the selected lines. In addition, the sensitivity of WSP and WSR mice to the anticonvulsant actions of ethanol against each treatment was determined. Neither the convulsant amperage 50 (CA50) for ECS nor the ED50 for any drug treatment differed for the selected lines. When ethanol (1.5 g/kg) was administered prior to ECS, there was a dramatic differential suppression of ECS in the lines: the CA50 of WSR mice was elevated 5-fold, whereas the CA50 of WSP mice increased only two fold. Ethanol pretreatment also elevated the ED50 for strychnine and flurothyl in WSR mice significantly more than WSP mice, but the line difference was smaller than for the anticonvulsant effect against ECS. The ED50s for the GABA antagonists were not different between the WSR and WSP lines after ethanol pretreatment. We conclude that genetic selection is producing lines of mice that differ specifically in the degree of seizure severity caused by withdrawal from ethanol physical dependence and not in generalized CNS excitability. An increased sensitivity to the anticonvulsant effects of ethanol against some convulsant treatments has appeared as a correlated response to selection in the WSR line.  相似文献   

9.
The effects of several doses of cholecystokinin octapeptide sulphate ester (CCK-8-SE) and nonsulphated cholecystokinin octapeptide (CCK-8-NS), and two CCK-related peptide analogues Ac-Thr5-caerulein, and nonsulphated Ac-Thr5-caerulein were investigated on electroshock-(ES)-induced seizures after intraperitoneal administration in mice. As parameters, the duration of the tonic and clonic phase of the fit, and those of postictal coma and behavioural depression were measured. CCK-8-SE decreased the duration of the clonic phase; its highest dose, 3.2 mumol/kg, shortened the coma. CCK-8-NS antagonized only slightly the clonic phase of seizure. Ac-Thr5-caerulein did not influence ES-induced seizures in any dose, only increased the duration of behavioural depression. Similarly to CCK-8-NS, the nonsulphated form of Ac-Thr5-caerulein inhibited selectively the clonic phase of seizures. The reference drugs, diazepam and phenobarbital, antagonized dose-dependently and most effectively the tonic phase of ES-induced seizures, but in much higher doses than did the CCK-related peptides. Besides, diazepam increased and phenobarbital decreased the duration of postictal coma. The results showed that the tested CCK-related peptides inhibit prevalently the clonic phase of ES-induced seizures after peripheral administration.  相似文献   

10.
11.
Kainic acid (KA) induced epileptic seizures in mice is a commonly used experimental model of epilepsy. Previous studies have suggested the roles of various neurotransmitters and oxidative stress in KA-induced seizures. An important role of hypothyroidism has also been suggested in epilepsy. Thiamazole (TZ) is an anti-hyperthyroid drug with antioxidant property. This study reports the effect of TZ on KA-induced epileptic seizures in mice, produced by intraperitoneal (IP) injection of KA (18 mg/kg). Prior to KA injection, the animals were treated with TZ (12.5, 25 and 50 mg/kg IP). Our results showed that in KA alone group, about half of the animals developed seizures. Pre-treatment of mice with TZ significantly increased the frequency of seizures in dose-dependent manner. Administration of TZ significantly reduced the latency time and aggravated the severity of seizures. TZ also increased the mortality in KA-treated mice. Striatal dopamine and serotonin levels were markedly increased in KA alone treated mice, which were not significantly affected by TZ treatment. Among the indices of oxidative stress, we observed a significant reduction in cerebral vitamin E whereas the levels of cerebral malondialdehyde and conjugated dienes were significantly increased in animals with high severity of seizures. In conclusion, TZ potentiated the frequency and severity of experimental seizure in mice. There is a possibility of altered metabolism of KA in presence of TZ that might have potentiated the toxicity of KA. These findings suggest a caution while administering anti-hyperthyroid drugs in epileptic seizures.  相似文献   

12.
Secreted forms of the beta-amyloid precursor protein (beta-APP) have neuroprotective properties in vitro and may be involved in the containment of neuronal excitation. To test whether loss of secreted forms of beta-APP (sAPPs) may enhance excitotoxic responses, we injected mice homozygous for a targeted mutation of the beta-APP gene (beta-APPDelta/Delta) intraperitoneally with kainic acid. We found that in these mice, kainic acid induced seizures initiated earlier, and acute mortality was enhanced compared to isogenic wild-type mice independently from the callosal agenesis phenotype observed to occur at increased frequency in APP mutant mice. Expression of c-fos in cortex and cingulate gyrus was enhanced in beta-APPDelta/Delta mice, although the amount of structural damage and apoptosis in the hippocampal pyramidal cell layer and cortex was similar to that of controls. When cerebellar granule cell cultures and cortical neuronal cultures were challenged with glutamate receptor agonists, the rates of cell death and apoptosis of beta-APPDelta/Delta mice were indistinguishable from those of controls. Therefore, deficiency of sAPPs causes facilitation of seizure activity in the absence of enhanced cell death. Since enhanced seizures were observed also in mice homozygous for a deletion of the entire beta-APP gene, this phenotype results from a loss of APP rather than from a dominant effect of APPDelta.  相似文献   

13.
Taylor BA 《Genetics》1976,83(2):373-377
Four sets of recombinant inbred lines of mice have been used to analyze genetic differences in acute toxicity of the drug, isonicotinic acid hydrazide. Standard inbred strains, their F1 hybrids and recombinant inbred strains were all challenged with a single dose of the drug. The percent mortality of the different groups was analyzed to estimate heritability and the number of genes affecting resistance. The data indicated that resistance factors were dominant, heritability was moderate (.25-.37), and more than one gene was involved in each of four different sets of recombinant inbred lines. Possible approaches for identifying and mapping individual genes affecting resistance are discussed.  相似文献   

14.
THE experiments described here were designed to investigate the mechanisms governing recovery of susceptibility to audiogenic seizure in mice. The data indicate that this recovery following an initial seizure is limited by some process affecting the peripheral auditory pathway, rather than central or peripheral motor pathways. Two strains of mice were studied, DBA/2J and SJL/J, the latter being rendered susceptible by previous exposure to noise1.  相似文献   

15.
16.
The antiepileptic effect of dexphenmetrazine (DP) and acetyldexphenmetrazine (ADP) was tested on audiogenic seizures in a 100% susceptible strain of mice. DP had no antiepileptic effect, however, it markedly suppressed the postparoxysmal motor inhibition. ADP had a distinct anticonvulsive effect--it suppressed the convulsive component of the seizure, leaving its running component unaffected. The results are compared with the effect of both drugs on electrographic epileptic phenomena in the turtle brain (Servít and Strejcková 1976).  相似文献   

17.
18.
19.
Galactosylceramide (GalCer) and 3- O -sulfo-GalCer (sulfatide) are abundant sphingolipids in myelinating glial cells. However, low levels of GalCer and sulfatide have also been found in neurons, though their physiological role in these cells is unknown. Transgenic mice over-expressing UDP-galactose : ceramide galactosyltransferase (CGT) under control of the Thy1.2 promoter synthesize C18 : 0 fatty acid containing GalCer and sulfatide in neurons. Depending on the genetic background, these transgenic mice have a significantly reduced life span. Transgenic mice were extremely sensitive to sound stimuli and displayed lethal audiogenic seizures after relatively mild acoustic stimulation, i.e., key jangling. CGT-transgenic mice additionally over-expressing the adenosine 3'-phospho 5'-phosphosulfate : cerebroside sulfotransferase were more sensitive to audiogenic seizure induction than mice expressing only the CGT-transgene. This correlated with the higher sulfatide content in neuronal plasma membranes of the double-transgenic mice compared with CGT-transgenic mice, and strongly suggests that lethal audiogenic seizures are caused by elevated sulfatide levels in transgenic neurons. CGT-transgenic mice will be a useful model to further investigate how sulfatide affects functional properties of neurons.  相似文献   

20.
Alyami  Nouf M.  Abdi  Saba  Alyami  Hanadi M.  Almeer  Rafa 《Neurochemical research》2022,47(10):3012-3023

The role of oxidative stress in the initiation and progress of epilepsy is well established. Proanthocyanidins (PACs), a naturally occurring polyphenolic compound, have been reported to possess a broad spectrum of pharmacological and therapeutic properties against oxidative stress. However, the protective effects of proanthocyanidins against epilepsy have not been clarified. In the present study, we used the pentylenetetrazole (PTZ)-induced epilepsy mouse model to explore whether proanthocyanidins could help to reduce oxidative stress and protect against epilepsy. Mice were allocated into four groups (n?=?14 per each group): control, PTZ (60 mg/kg, intraperitoneally), PACs?+?PTZ (200 mg/kg, p.o.) and sodium valproate (VPA)?+?PTZ (200 mg/kg, p.o.). PTZ injection caused oxidative stress in the hippocampal tissue as represented by the elevated lipid peroxidation and NO synthesis and increased expression of iNOS. Furthermore, depleted levels of anti-oxidants, GSH, GR, GPx, SOD, and CAT also indicate that oxidative stress was induced in mice exposed to PTZ. Additionally, a state of neuroinflammation was recorded following the developed seizures. Moreover, neuronal apoptosis was recorded following the development of epileptic convulsions as confirmed by the elevated Bax and caspase-3 and the decreased Bcl2 protein. Moreover, AChE activity, DA, NE, 5-HT, brain-derived neurotrophic factor levels, and gene expression of Nrf2 have decreased in the hippocampal tissue of PTZ exposed mice. However, pre-treatment of mice with PACs protected against the generation of oxidative stress, apoptosis, and neuroinflammation in the PTZ exposed mice brain as the biomarkers for all these conditions was bought to control levels. In addition, the gene expression of Nrf2 was significantly upregulated following PACs treatment. These results suggest that PACs can ameliorate oxidative stress, neuroinflammation, and neuronal apoptosis by activating the Nrf2 signaling pathway in PTZ induced seizures in mice.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号