首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

2.
Protein-free parallel triple-stranded DNA complex formation   总被引:2,自引:2,他引:0       下载免费PDF全文
A 14 nt DNA sequence 5′-AGAATGTGGCAAAG-3′ from the zinc finger repeat of the human KRAB zinc finger protein gene ZNF91 bearing the intercalator 2-methoxy,6-chloro,9-amino acridine (Acr) attached to the sugar–phosphate backbone in various positions has been shown to form a specific triple helix (triplex) with a 16 bp hairpin (intramolecular) or a two-stranded (intermolecular) duplex having the identical sequence in the same (parallel) orientation. Intramolecular targets with the identical sequence in the antiparallel orientation and a non-specific target sequence were tested as controls. Apparent binding constants for formation of the triplex were determined by quantitating electrophoretic band shifts. Binding of the single-stranded oligonucleotide probe sequence to the target led to an increase in the fluorescence anisotropy of acridine. The parallel orientation of the two identical sequence segments was confirmed by measurement of fluorescence resonance energy transfer between the acridine on the 5′-end of the probe strand as donor and BODIPY-Texas Red on the 3′-amino group of either strand of the target duplex as acceptor. There was full protection from OsO4-bipyridine modification of thymines in the probe strand of the triplex, in accordance with the presumed triplex formation, which excluded displacement of the homologous duplex strand by the probe–intercalator conjugate. The implications of these results for the existence of protein-independent parallel triplexes are discussed.  相似文献   

3.
4.
Several cellular processes involve alignment of three nucleic acids strands, in which the third strand (DNA or RNA) is identical and in a parallel orientation to one of the DNA duplex strands. Earlier, using 2-aminopurine as a fluorescent reporter base, we demonstrated that a self-folding oligonucleotide forms a recombination-like structure consistent with the R-triplex. Here, we extended this approach, placing the reporter 2-aminopurine either in the 5′- or 3′-strand. We obtained direct evidence that the 3′-strand forms a stable duplex with the complementary central strand, while the 5′-strand participates in non-Watson–Crick interactions. Substituting 2,6-diaminopurine or 7-deazaadenine for adenine, we tested and confirmed the proposed hydrogen bonding scheme of the A*(T·A) R-type triplet. The adenine substitutions expected to provide additional H-bonds led to triplex structures with increased stability, whereas the substitutions consistent with a decrease in the number of H-bonds destabilized the triplex. The triplex formation enthalpies and free energies exhibited linear dependences on the number of H-bonds predicted from the A*(T·A) triplet scheme. The enthalpy of the 10 nt long intramolecular triplex of −100 kJ·mol−1 demonstrates that the R-triplex is relatively unstable and thus an ideal candidate for a transient intermediate in homologous recombination, t-loop formation at the mammalian telomere ends, and short RNA invasion into a duplex. On the other hand, the impact of a single H-bond, 18 kJ·mol−1, is high compared with the overall triplex formation enthalpy. The observed energy advantage of a ‘correct’ base in the third strand opposite the Watson–Crick base pair may be a powerful mechanism for securing selectivity of recognition between the single strand and the duplex.  相似文献   

5.
We present evidence of formation of an intramolecular parallel triple helix with T•A.T and G•G.C base triplets (where • represents the hydrogen bonding interaction between the third strand and the duplex while . represents the Watson–Crick interactions which stabilize the duplex). The third GT strand, containing seven GpT/TpG steps, targets the polypurine sequence 5′-AGG-AGG-GAG-GAG-3′. The triple helix is obtained by the folding back twice of a 36mer, formed by three dodecamers tethered by hydroxyalkyl linkers (-L-). Due to the design of the oligonucleotide, the third strand orientation is parallel with respect to the polypurine strand. Triple helical formation has been studied in concentration conditions in which native gel electrophoresis experiments showed the absence of intermolecular structures. Circular dichroism (CD) and UV spectroscopy have been used to evidence the triplex structure. A CD spectrum characteristic of triple helical formation as well as biphasic UV and CD melting curves have been obtained in high ionic strength NaCl solutions in the presence of Zn2+ ions. Specific interactions with Zn2+ ions in low water activity conditions are necessary to stabilize the parallel triplex.  相似文献   

6.
7.
Conversion of stable RNA hairpin to a metastable dimer in frozen solution   总被引:1,自引:1,他引:0  
Sun X  Li JM  Wartell RM 《RNA (New York, N.Y.)》2007,13(12):2277-2286
Previous studies employing a 79-nucleotide (nt) RNA indicated that this RNA could form two bands in a native polyacrylamide gel while one band was observed in a denaturing gel. This report describes an investigation on the nature of the two corresponding structures and the segment responsible for forming the slower mobility band. Sedimentation equilibrium of the 79-nt RNA was consistent with the two gel bands corresponding to monomer and dimer forms. The portion of the RNA required for dimer formation was explored using a secondary structure prediction algorithm of two 79-nt RNAs linked in a head-to-tail fashion. The predicted structure suggested that the first 21-nt at the 5′ end of each RNA formed a self-complementary duplex. A ribonuclease H assay carried out with RNA prepared as monomer (M), or a mixture of monomer and dimer (M/D), gave results consistent with the predicted M and D structures. Gel mobility experiments on 5′ and 3′ segments of the 79-nt RNA also indicated that dimer formation was due to the 21-nt 5′ end. Studies on the 21-nt RNA molecule and sequence variants showed that this sequence can form a hairpin and a dimer complex. Unexpectedly, the hairpin to dimer conversion was shown to occur at high efficiency in frozen solution, although little or no conversion was observed above 0°C. The results indicate that a freezing environment can promote formation of intermolecular RNA complexes from stable RNA hairpins, supporting the notion that this environment could have played a role in the evolution of RNA complexity.  相似文献   

8.
Thirty-five RNA duplexes containing single nucleotide bulge loops were optically melted and the thermodynamic parameters for each duplex determined. The bulge loops were of the group III variety, where the bulged nucleotide is either a AG/U or CU/G, leading to ambiguity to the exact position and identity of the bulge. All possible group III bulge loops with Watson–Crick nearest-neighbors were examined. The data were used to develop a model to predict the free energy of an RNA duplex containing a group III single nucleotide bulge loop. The destabilization of the duplex by the group III bulge could be modeled so that the bulge nucleotide leads to the formation of the Watson–Crick base pair rather than the wobble base pair. The destabilization of an RNA duplex caused by the insertion of a group III bulge is primarily dependent upon non-nearest-neighbor interactions and was shown to be dependent upon the stability of second least stable stem of the duplex. In-line structure probing of group III bulge loops embedded in a hairpin indicated that the bulged nucleotide is the one positioned further from the hairpin loop irrespective of whether the resulting stem formed a Watson–Crick or wobble base pair. Fourteen RNA hairpins containing group III bulge loops, either 3′ or 5′ of the hairpin loop, were optically melted and the thermodynamic parameters determined. The model developed to predict the influence of group III bulge loops on the stability of duplex formation was extended to predict the influence of bulge loops on hairpin stability.  相似文献   

9.
Hybrids of RNA and arabinonucleic acid (ANA) as well as the 2′-fluoro-ANA analog (2′F-ANA) were recently shown to be substrates of the enzyme RNase H. Although RNase H binds to double-stranded RNA, no cleavage occurs with such duplexes. Therefore, knowledge of the structure of ANA/RNA hybrids may prove helpful in the design of future antisense oligonucleotide analogs. In this study, we have determined the NMR solution structures of ANA/RNA and DNA/RNA hairpin duplexes and compared them to the recently published structure of a 2′F-ANA/RNA hairpin duplex. We demonstrate here that the sugars of RNA nucleotides of the ANA/RNA hairpin stem adopt the C3′-endo (north, A-form) conformation, whereas those of the ANA strand adopt a ‘rigid’ O4′-endo (east) sugar pucker. The DNA strand of the DNA/RNA hairpin stem is flexible, but the average DNA/RNA hairpin structural parameters are close to the ANA/RNA and 2′F-ANA/RNA hairpin parameters. The minor groove width of ANA/RNA, 2′F-ANA/RNA and DNA/RNA helices is 9.0 ± 0.5 Å, a value that is intermediate between that of A- and B-form duplexes. These results rationalize the ability of ANA/RNA and 2′F-ANA/RNA hybrids to elicit RNase H activity.  相似文献   

10.
The interaction of ethidium bromide (EB), a DNA intercalator, with two intramolecular triplexes 5'd(G4A4G4-[T4]-C4T4C4-[T4]-G4T4G4), 5'd(G4T4G4-[T4]-G4A4G4-[T4]-C4T4C4) ([T4] represents a stretch of 4 thymine residues) and their precursor duplexes has been investigated by circular dichroism, fluorescence and UV absorption spectroscopy. Binding of EB induces a circular dichroism band in the region around 310 nm which is positive for the duplex forms but negative for the triplex forms. We observed that the binding of EB to the duplex form does not induce the formation of the triplex structures. Thermal denaturation experiments demonstrate that EB stabilizes more the parallel triple helix than the antiparallel one. Analysis of the binding process from fluorescence measurements shows that binding constants to the triple helical forms and to the hairpin reference duplex [T4]-G4A4G4-[T4]-C4T4C4) are close. However the binding site size is larger for the triplexes (4-6 base triplets) than for the duplex (2 base pairs).  相似文献   

11.
Peptide nucleic acids (PNAs) have been developed for applications in biotechnology and therapeutics. There is great potential in the development of chemically modified PNAs or other triplex-forming ligands that selectively bind to RNA duplexes, but not single-stranded regions, at near-physiological conditions. Here, we report on a convenient synthesis route to a modified PNA monomer, thio-pseudoisocytosine (L), and binding studies of PNAs incorporating the monomer L. Thermal melting and gel electrophoresis studies reveal that L-incorporated 8-mer PNAs have superior affinity and specificity in recognizing the duplex region of a model RNA hairpin to form a pyrimidine motif major-groove RNA2–PNA triplex, without appreciable binding to single-stranded regions to form an RNA–PNA duplex or, via strand invasion, forming an RNA–PNA2 triplex at near-physiological buffer condition. In addition, an L-incorporated 8-mer PNA shows essentially no binding to single-stranded or double-stranded DNA. Furthermore, an L-modified 6-mer PNA, but not pseudoisocytosine (J) modified or unmodified PNA, binds to the HIV-1 programmed −1 ribosomal frameshift stimulatory RNA hairpin at near-physiological buffer conditions. The stabilization of an RNA2–PNA triplex by L modification is facilitated by enhanced van der Waals contacts, base stacking, hydrogen bonding and reduced dehydration energy. The destabilization of RNA–PNA and DNA–PNA duplexes by L modification is due to the steric clash and loss of two hydrogen bonds in a Watson–Crick-like G–L pair. An RNA2–PNA triplex is significantly more stable than a DNA2–PNA triplex, probably because the RNA duplex major groove provides geometry compatibility and favorable backbone–backbone interactions with PNA. Thus, L-modified triplex-forming PNAs may be utilized for sequence-specifically targeting duplex regions in RNAs for biological and therapeutic applications.  相似文献   

12.
Triple helix-forming oligonucleotides covalently linked to topoisomerase I inhibitors, in particular the antitumor agent camptothecin, trigger topoisomerase I-mediated DNA cleavage selectively in the proximity of the binding site of the oligonucleotide vector. In the present study, we have performed a systematic analysis of the DNA cleavage efficiency as a function of the positioning of the camptothecin derivative, either on the 3′ or the 5′ side of the triplex, and the location of the cleavage site. A previously identified cleavage site was inserted at different positions within two triplex site-containing 59 bp duplexes. Sequence-specific DNA cleavage by topoisomerase I occurs only with triplex conjugates bearing the inhibitor at the 3′-end of the oligonucleotide and on the oligopyrimidine strand of the duplex. The lack of targeted cleavage on the 5′ side is attributed to the structural differences of the 3′ and 5′ duplex–triplex DNA junctions. The changes induced in the double helix by the triple-helical structure interfere with the action of the enzyme according to a preferred spatial organization. Camptothecin conjugates of oligonucleotides provide efficient tools to probe the organization of the topoisomerase I–DNA complex and will be useful to understand the functioning of topoisomerase I in living cells.  相似文献   

13.
The isomerization of phosphodiester functionality of nucleic acids from 3′,5′- to a less common 2′,5′-linkage influences the complex interplay of stereoelectronic effects that drive pseudorotational equilibrium of sugar rings and thus affect the conformational propensities for compact or more extended structures. The present study highlights the subtle balance of non-covalent forces at play in structural equilibrium of 2′,5′-linked RNA analogue, 3′-O-(2-methoxyethyl) substituted dodecamer *CG*CGAA*U*U*CG*CG, 3′-MOE-2′,5′-RNA, where all cytosines and uracils are methylated at C5. The NMR and UV spectroscopic studies have shown that 3′-MOE-2′,5′-RNA adopts both hairpin and duplex secondary structures, which are involved in a dynamic exchange that is slow on the NMR timescale and exhibits strand and salt concentration as well as pH dependence. Unusual effect of pH over a narrow physiological range is observed for imino proton resonances with exchange broadening observed at lower pH and relatively sharp lines observed at higher pH. The solution structure of 3′-MOE-2′,5′-RNA hairpin displays a unique and well-defined loop, which is stabilized by Watson–Crick A5·*U8 base pair and by n → π* stacking interactions of O4′ lone-pair electrons of A6 and *U8 with aromatic rings of A5 and *U7, respectively. In contrast, the stem region of 3′-MOE-2′,5′-RNA hairpin is more flexible. Our data highlight the important feature of backbone modifications that can have pronounced effects on interstrand association of nucleic acids.  相似文献   

14.
Data are presented on a triplex type with two parallel homologous strands for which triplex formation is almost as strong as duplex formation at least for some sequences and even at pH 7 and 0.2 M NaCl. The evidence mainly rests upon comparing thermodynamic properties of similar systems. A paperclip oligonucleotide d(A12C4T12C4A12) with two linkers C4 obviously can form a triplex with parallel back-folded adenine strand regions, because the single melting transition of this complex splits in two transitions by introducing mismatches only in the third strand region. Respectively, a hairpin duplex d(A12C4T12) and a single strand d(A12) form a triplex as a 1:1 complex in which the second adenine strand is parallel oriented to the homologous one in the Watson-Crick paired duplex. In this system the melting temperature T(m) of the triplex is practically the same as that of the duplex d(A12)-d(T12), at least within a complex concentration range of 0.2-4.0 microM. The melting behaviour of complexes between triplex stabilizing ligand BePI and the system hairpin duplex plus single strand supports the triplex model. Non-denaturing gel electrophoresis suggests the existence of a triplex for a system in which five of the twelve A-T*A base triads are substituted by C-G*C base triads. The recognition between any substituted Watson-Crick base pair (X-Y) in the hairpin duplex d(A4XA7C4T7YT4) and the correspondingly replaced base (Z) in the third strand d(A4ZA7) is mutually selective. All triplexes with matching base substitutions (Z = X) have nearly the same stability (T(m) values from 29 to 33.5 degrees C), whereas triplexes with non-matching substitutions (Z not equal X) show a clearly reduced stability (T(m) values from 15 to 22 degrees C) at 2microM equimolar oligonucleotide concentration. Most nucleic acid triple helices hitherto known are limited to homopurine-homopyrimidine sequences in the target duplex. A stable triplex formation is demonstrated for inhomogeneous sequences tolerating at least 50% pyrimidine content in the homologous strands. On the basis of the surprisingly similar thermodynamic parameters for duplex and triplex, and of the fact that this triplex type seems to be more stable than many other natural DNA triplexes known, and on the basis of semiempirical and molecule mechanical calculations, we postulate bridging interactions of the third strand with the two other strands in the triplex according to the recombination motif. This triplex, denoted by us 'recombination-like form', tolerates heterogeneous base sequences.  相似文献   

15.
Song BH  Yun SI  Choi YJ  Kim JM  Lee CH  Lee YM 《RNA (New York, N.Y.)》2008,14(9):1791-1813
Tertiary or higher-order RNA motifs that regulate replication of positive-strand RNA viruses are as yet poorly understood. Using Japanese encephalitis virus (JEV), we now show that a key element in JEV RNA replication is a complex RNA motif that includes a string of three discontinuous complementary sequences (TDCS). The TDCS consists of three 5-nt-long strands, the left (L) strand upstream of the translation initiator AUG adjacent to the 5′-end of the genome, and the middle (M) and right (R) strands corresponding to the base of the Flavivirus-conserved 3′ stem–loop structure near the 3′-end of the RNA. The three strands are arranged in an antiparallel configuration, with two sets of base-pairing interactions creating L-M and M-R duplexes. Disrupting either or both of these duplex regions of TDCS completely abolished RNA replication, whereas reconstructing both duplex regions, albeit with mutated sequences, fully restored RNA replication. Modeling of replication-competent genomes recovered from a large pool of pseudorevertants originating from six replication-incompetent TDCS mutants suggests that both duplex base-pairing potentials of TDCS are required for RNA replication. In all cases, acquisition of novel sequences within the 3′M-R duplex facilitated a long-range RNA–RNA interaction of its 3′M strand with either the authentic 5′L strand or its alternative (invariably located upstream of the 5′ initiator), thereby restoring replicability. We also found that a TDCS homolog is conserved in other flaviviruses. These data suggest that two duplex base-pairings defined by the TDCS play an essential regulatory role in a key step(s) of Flavivirus RNA replication.  相似文献   

16.
Adenosine deaminases acting on RNA (ADARs) hydrolytically deaminate adenosines (A) in a wide variety of duplex RNAs and misregulation of editing is correlated with human disease. However, our understanding of reaction selectivity is limited. ADARs are modular enzymes with multiple double-stranded RNA binding domains (dsRBDs) and a catalytic domain. While dsRBD binding is understood, little is known about ADAR catalytic domain/RNA interactions. Here we use a recently discovered RNA substrate that is rapidly deaminated by the isolated human ADAR2 deaminase domain (hADAR2-D) to probe these interactions. We introduced the nucleoside analog 8-azanebularine (8-azaN) into this RNA (and derived constructs) to mechanistically trap the protein–RNA complex without catalytic turnover for EMSA and ribonuclease footprinting analyses. EMSA showed that hADAR2-D requires duplex RNA and is sensitive to 2′-deoxy substitution at nucleotides opposite the editing site, the local sequence and 8-azaN nucleotide positioning on the duplex. Ribonuclease V1 footprinting shows that hADAR2-D protects ∼23 nt on the edited strand around the editing site in an asymmetric fashion (∼18 nt on the 5′ side and ∼5 nt on the 3′ side). These studies provide a deeper understanding of the ADAR catalytic domain–RNA interaction and new tools for biophysical analysis of ADAR–RNA complexes.  相似文献   

17.
Molecular beacons are stem–loop hairpin oligonucleotide probes labeled with a fluorescent dye at one end and a fluorescence quencher at the other end; they can differentiate between bound and unbound probes in homogeneous hybridization assays with a high signal-to-background ratio and enhanced specificity compared with linear oligonucleotide probes. However, in performing cellular imaging and quantification of gene expression, degradation of unmodified molecular beacons by endogenous nucleases can significantly limit the detection sensitivity, and results in fluorescence signals unrelated to probe/target hybridization. To substantially reduce nuclease degradation of molecular beacons, it is possible to protect the probe by substituting 2′-O-methyl RNA for DNA. Here we report the analysis of the thermodynamic and kinetic properties of 2′-O-methyl and 2′-deoxy molecular beacons in the presence of RNA and DNA targets. We found that in terms of molecular beacon/target duplex stability, 2′-O-methyl/RNA > 2′-deoxy/RNA > 2′-deoxy/DNA > 2′-O-methyl/DNA. The improved stability of the 2′-O-methyl/RNA duplex was accompanied by a slightly reduced specificity compared with the duplex of 2′-deoxy molecular beacons and RNA targets. However, the 2′-O-methyl molecular beacons hybridized to RNA more quickly than 2′-deoxy molecular beacons. For the pairs tested, the 2′-deoxy-beacon/DNA-target duplex showed the fastest hybridization kinetics. These findings have significant implications for the design and application of molecular beacons.  相似文献   

18.
Translation of Hepatitis C Virus (HCV) RNA is directed by an internal ribosome entry site (IRES) in the 5′-untranslated region (5′-UTR). HCV translation is stimulated by the liver-specific microRNA-122 (miR-122) that binds to two binding sites between the stem-loops I and II near the 5′-end of the 5′-UTR. Here, we show that Argonaute (Ago) 2 protein binds to the HCV 5′-UTR in a miR-122-dependent manner, whereas the HCV 3′-UTR does not bind Ago2. miR-122 also recruits Ago1 to the HCV 5’-UTR. Only miRNA duplex precursors of the correct length stimulate HCV translation, indicating that the duplex miR-122 precursors are unwound by a complex that measures their length. Insertions in the 5′-UTR between the miR-122 binding sites and the IRES only slightly decrease translation stimulation by miR-122. In contrast, partially masking the miR-122 binding sites in a stem-loop structure impairs Ago2 binding and translation stimulation by miR-122. In an RNA decay assay, also miR-122-mediated RNA stability contributes to HCV translation stimulation. These results suggest that Ago2 protein is directly involved in loading miR-122 to the HCV RNA and mediating RNA stability and translation stimulation.  相似文献   

19.
Despite the widespread application of RNA interference (RNAi) as a research tool for diverse purposes, the key step of strand selection of siRNAs during the formation of RNA-induced silencing complex (RISC) remains poorly understood. Here, using siRNAs targeted to the complementary region of Survivin and the effector protease receptor 1 (EPR-1), we show that both strands of the siRNA duplex can find their target mRNA and are equally eligible for assembly into Argonaute 2 (Ago2) of RISC in HEK293 cells. Transfection of the synthetic siRNA duplexes with different thermodynamic profiles or short hairpin RNA (shRNA) vectors that generate double-stranded RNAs (dsRNAs), permitting processing specifically from either the 5′ or 3′ end of the incipient siRNA, results in the degradation of the respective target mRNAs of either strand of the siRNA duplex with comparable efficiencies. Thus, while most RNAi reactions may follow the thermodynamic asymmetry rule in strand selection, our study suggests an exceptional mode for certain siRNAs in which both strands of the duplex are competent in sponsoring RNAi, and implies additional factors that might dictate the RNAi targets.  相似文献   

20.
Solution structure of a dsDNA:LNA triplex   总被引:1,自引:1,他引:0       下载免费PDF全文
We have determined the NMR structure of an intramolecular dsDNA:LNA triplex, where the LNA strand is composed of alternating LNA and DNA nucleotides. The LNA oligonucleotide binds to the dsDNA duplex in the major groove by formation of Hoogsteen hydrogen bonds to the purine strand of the duplex. The structure of the dsDNA duplex is changed to accommodate the LNA strand, and it adopts a geometry intermediate between A- and B-type. There is a substantial propeller twist between base-paired nucleobases. This propeller twist and a concomitant large propeller twist between the purine and LNA strands allows the pyrimidines of the LNA strand to interact with the 5′-flanking duplex pyrimidines. Altogether, the triplex has a regular global geometry as shown by a straight helix axis. This shows that even though the third strand is composed of alternating DNA and LNA monomers with different sugar puckers, it forms a seamless triplex. The thermostability of the triplex is increased by 19°C relative to the unmodified DNA triplex at acidic pH. Using NMR spectroscopy, we show that the dsDNA:LNA triplex is stable at pH 8, and that the triplex structure is identical to the structure determined at pH 5.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号