首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking water sources because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection. In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentinel-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs >1 ha in area. Results from this study show that 5.6% of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7% of waterbodies were resolvable when a three by three pixel (3 × 3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3 × 3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organization’s (WHO) high threshold for risk of 100,000 cells mL−1. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1%) and Grand Lake St. Marys, OH (83%) had the highest observed bloom frequencies per region. The method presented here may indicate locations with high exposure to cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational and drinking water sources.  相似文献   

2.
The blue green algae or cyanobacteria represent a diverse group of organisms that produce potent natural toxins. There have been case reports of severe morbidity and mortality in domestic animals through drinking water contaminated by these toxins. Microcystins, in particular, have been associated with acute liver damage and possibly liver cancer in laboratory animals. Although, there has been little epidemiologic research on toxin effects in humans, a study by Yu (1995) found an association between primary liver cancer and surface water. Surface water drinking supplies are particularly vulnerable to the growth of these organisms; current US drinking water treatment practices do not monitor or actively treat for blue green algal toxins including the microcystins.After a monitoring survey in Florida found organisms and microcystins (among other cyanobacterial toxins) in surface water drinking sources, a pilot ecological study was performed using a Geographic Information System (GIS) to evaluate the risk of primary hepatocellular carcinoma (HCC) and proximity to a surface water treatment plant at cancer diagnosis. The study linked all HCC cancers diagnosed in Florida from 1981 to 1998 with environmental databases.A significantly increased risk for HCC with residence within the service area of a surface water treatment plant was found compared to persons living in areas contiguous to the surface water treatment plants. However, this increased risk was not seen in comparison to persons living in randomly selected ground water treatment service areas or compared to the Florida cumulative incidence rate for the study period, using various comparison and GIS methodologies. Furthermore, these findings must be interpreted in light of significant issues of latency, high population mobility, and the lack of individual exposure information. Nevertheless, the issue of acute and chronic human health effects associated with the consumption of surface waters possibly contaminated by blue green algal toxins merits further investigation.  相似文献   

3.
4.
The vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter. A nitrogen loading rate higher than 1.0 kg NH4-N m−3_media d−1 is necessary to obtain nitrification activity over all the height of the biofilter. The increase in water and air velocities from 6 to 10 m h−1 and 10 to 20 m h−1 has increased the nitrification rate by 80% and 20% respectively. Backwashing decreases the maximum nitrification rate in the media by only 3-14%. The nitrification rate measured at a level of 0.5 m above the bottom of the filter is four times higher than the applied daily average volumetric nitrogen loading rate up to 1.5 kg NH4-N m−3_media d−1. Finally, it is shown that 58% of the available nitrification activity is mobilized in steady-state conditions while up to 100% is used under inflow-rate increase.  相似文献   

5.
The formation of biofilms in drinking water distribution networks is a significant technical, aesthetic and hygienic problem. In this study, the effects of assimilable organic carbon, microbially available phosphorus (MAP), residual chlorine, temperature and corrosion products on the formation of biofilms were studied in two full-scale water supply systems in Finland and Latvia. Biofilm collectors consisting of polyvinyl chloride pipes were installed in several waterworks and distribution networks, which were supplied with chemically precipitated surface waters and groundwater from different sources. During a 1-year study, the biofilm density was measured by heterotrophic plate counts on R2A-agar, acridine orange direct counting and ATP-analyses. A moderate level of residual chorine decreased biofilm density, whereas an increase of MAP in water and accumulated cast iron corrosion products significantly increased biofilm density. This work confirms, in a full-scale distribution system in Finland and Latvia, our earlier in vitro finding that biofilm formation is affected by the availability of phosphorus in drinking water.  相似文献   

6.
A new direct approach, called direct viable count (DVC)-FISH-ScanRDI, combining viability measurement, specific detection and sensitive enumeration of highly diluted Enterobacteriaceae cells, was assessed during the summer in water samples from a North American drinking water treatment plant and its distribution system. Major results of this field investigation show a higher sensitivity of the DVC-FISH-ScanRDI approach in enumerating viable Enterobacteriaceae cells in distributed drinking water, relative to a culture-based method, and the increased concentration of viable but non-culturable (VBNC) Enterobacteriaceae cells in distributed water for temperatures above 18 degrees C.  相似文献   

7.
Because dramatic cases of arsenic contamination of water resources, soils, vegetables, humans and animals increase, this review has focussed on the fate and behaviour of this element and what kind of health impacts are related with its release in surface or ground waters. In a first part, we point out how the primary minerals can lead to As mobilization and exportation by surface waters and suspended matter. We also emphasize the particular key role for As retention through both adsorption onto natural Fe(III) (hydr)oxides, Mn oxides and/or precipitation as Fe(III) arsenates. Nowadays, numerous and efficient systems for arsenic removal from any natural resources are available to produce good quality drinking water (with <10 μg/l As); however it is not within the scope of the present review. In a second part we focus on recent knowledge about the human toxicity of the various arsenic species. Chronic exposure to As in drinking water lead to many health diseases and, although the mechanisms of toxification/detoxification are not well identified, the role of methylated species is discussed. Some epidemiologic studies are cited, but the exact relationship between past chronic As exposure and present health diseases has been questioned.  相似文献   

8.
In this study, potential toxicity in organic pollutants in Meiliang Bay, Lake Taihu, a drinking water source, was investigated using the comet assay and zebrafish embryo test, and two control sites in Lake Changdang and the Changjiang (Yangtze) River were established. For the genotoxicity assay, results showed that organic extracts from water samples induce DNA damage on human lymphocytes and mouse testicular cells. A statistically significant difference (p < 0.01) was observed versus the solvent control, as shown by multiple comparisons at a dose of 100 ml tube−1. The degree of DNA damage caused by Meiliang Bay water was most serious (human lymphocytes cells—184 arbitrary units (AU); 234 AU on mouse testicular cells). Organic extracts also affected zebrafish embryo development. Embryo coagulation, axis abnormality, slow absorbability of vitellicle, and multi-edema related to teratogenesis at 96 hpf were observed. In the high dose group, there was obvious edema in the hearts and vitellicles for most dysplastic embryos. Toxic potential in organic pollutants in drinking water sources from the Yangtze River and Lake Changdang were less serious than Meiliang Bay. Therefore, the drinking water source in Meiliang Bay was unsafe compared to the Changjiang River and Lake Changdang, and it is exigent that Meiliang Bay water quality should be ameliorated further.  相似文献   

9.
The results of this study support the use of fecal Bacteroidales qPCR as a rapid method to complement traditional, culture-dependent, water quality indicators in systems where drinking water is supplied without chlorination or other forms of disinfection. A SYBR-green based, quantitative PCR assay was developed to determine the concentration of fecal Bacteroidales 16S rRNA gene copies. The persistence of a Bacteroides vulgatus pure culture and fecal Bacteroidales from a wastewater inoculum was determined in unchlorinated drinking water at 10 °C. B. vulgatus 16S rRNA gene copies persisted throughout the experimental period (200 days) in sterile drinking water but decayed faster in natural drinking water, indicating that the natural microbiota accelerated decay. In a simulated fecal contamination of unchlorinated drinking water, the decay of fecal Bacteroidales 16S rRNA gene copies was considerably faster than the pure culture but similar to that of Escherichia coli from the same wastewater inoculum.  相似文献   

10.
Backgroundsome recent studies have suggested that the risks of colon and rectal cancer increase with exposure to higher concentrations of nitrates in drinking water. This study is a meta-analysis of relevant studies.Methodsliterature published up to June 2021 was accessed and final results abstracted. Two cohort studies and seven case-control studies were analysed, and one case-control study not used because of limited data. Mixed effects meta-regression analysis was used to assess trends in colon cancer, rectal cancer, and colon cancer considered together, with nitrate concentrations in drinking water.ResultsThe usually accepted exposure upper limit for nitrates is 11.3 mg/l NO3-N. However most studies assess a lower range, with only one study providing data over 8 mg/l. Colorectal cancer risk increased by 2.4% (95% limits 0.4–4.5%) per unit increase in nitrate concentration, over a range from very low values to mid-range values. Extrapolation to higher dosages has insufficient data. The trend for rectal cancer is less than that for colon cancer.ConclusionThe increase in colorectal cancer risk with increasing nitrate concentration is lower than in some recent studies, and applies only over a small range. Extrapolation of these results to higher nitrate levels is not warranted. The studies vary greatly in their design, the nitrate concentrations assessed, and in their results. This association is weak and inconsistent, and may be influenced by bias and confounding factors. Any association of drinking water nitrates with colorectal cancer risk is small, and is uncertain.  相似文献   

11.
Sediments contain a huge number and diversity of microorganisms that are important for the flux of material and are pivotal to all major biogeochemical cycles. Sediments of reservoirs are affected by a wide spectrum of allochthous and autochthonous influences providing versatile environments along the flow of water within the reservoir. Here we report on the microbial diversity in sediments of the mesotrophic drinking water reservoir Saidenbach, Germany, featuring a pronounced longitudinal gradient in sediment composition in the reservoir system. Three sampling sites were selected along the gradient, and the microbial communities in two sediment depths were characterized using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and a bar-coded pyrosequencing approach. Multivariate statistic was used to reveal relationships between sequence diversity and the environmental conditions. The microbial communities were tremendously diverse with a Shannon index of diversity (H') ranging from 6.7 to 7.1. 18,986 sequences could be classified into 37 phyla including candidate divisions, but the full extent of genetic diversity was not captured. While CARD-FISH gave an overview about the community composition, more detailed information was gained by pyrosequencing. Bacteria were more abundant than Archaea. The dominating phylum in all samples was Proteobacteria, especially Betaproteobacteria and Deltaproteobacteria. Furthermore, sequences of Bacteroidetes, Verrucomicrobia, Acidobacteria, Chlorobi, Nitrospira, Spirochaetes, Gammaproteobacteria, Alphaproteobacteria, Chloroflexi, and Gemmatimonadetes were found. The site ammonium concentration, water content and organic matter content revealed to be strongest environmental predictors explaining the observed significant differences in the community composition between sampling sites.  相似文献   

12.
13.
14.
Eutrophication and pollution of Lake Ladoga cause epidemiologic and toxicologic risks for its use as a supply of drinking water. Increased levels of nutrients (N and P) and low molecular weight organic compounds enhance microbial activity and transformations of xenobiotic compounds in the lake, and promote the formation of chlorinated compounds in drinking water purification process. Experimental studies on the toxicity of water and sediment samples from Priozersk, Pitkärranta, Petrokrepost and Volkhov Bay areas have resulted in marked blood, immune system and genetic responses in laboratory rats. Severe toxicity is also evidenced by Daphnia biotests. Epidemiological studies have revealed elevated morbidity and mortality levels in the human populations in certain regions in the environs of Lake Ladoga, with respect to a group of diseases with a potential connection with water quality, i.e. diseases of digestive organs and genitourinary system as well as malignant neoplasms.  相似文献   

15.
16.
Water quality experienced changes throughout the 3-year ecological engineering experiment in the drinking water source in Meiliang Bay of Lake Taihu. Average concentrations of TN, TP, NH4+, BOD5 and transparency in the drinking water source during the period of July–December 2005 were 1.85, 0.13, 0.23, 3.03 mg L−1 and 27.5 cm, respectively, decreasing by 47.9%, 21.2%, 83.3%, 54.4% and 24.2%, compared to concentrations from the same period in 2003. Concentrations of chlorophyll a and COD were 89.9 μg L−1 and 6.45 mg L−1, increasing by 27.9% and 17.7%, compared to the values in 2003. Cyanobacteria (mainly Microcystis) dominated the phytoplankton community in the ecological engineering area during July–December 2005. Densities of cyanobacteria and Microcystis were higher in 2005 than in 2004 and higher inside the engineering area than outside. Density percentages of cyanobacteria and Microcystis to total algae were above 90% and 60% during the bloom period. Average density of flagellate algae was higher during July–December 2005 than in 2004. Changes in water quality in the engineering area resulted mainly from the weakening of waves, decrease in concentrations of suspended solids, and assimilation of mass algae and periphytons. In spite of initial improvement of water quality, cyanobacterial bloom still determined the phytoplankton dynamics and variations. Additionally, nutrient concentration still remained at a high level without control of external loading. Therefore, a more holistic approach and long-term management should be adopted in Lake Taihu.  相似文献   

17.
Aims:  To determine the impact of natural sunlight in disinfecting water contaminated with cysts of Giardia duodenalis and Entamoeba histolytica/dispar using plastic containers.
Methods and Results:  Known quantities of Giardia duodenalis and Entamoeba histolytica/dispar cysts in sterile water were exposed to the sun. Containers were made of polyethylene terephthalate, eight painted black on one side, one not painted and another cut open at the top and the last was a high density polypropylene container. Viability testing was performed using vital and fluorescent dyes. The same assays were conducted under cloudy conditions. Thermal control tests were also performed using heat without ultra violet light from the sun. Results show that 99·9% of parasites was inactivated when water temperatures reached 56°C after sunlight exposure.
Conclusion:  Both solar radiation and heat produced by the sun have a synergistic effect in killing cysts of Giardia duodenalis and Entamoeba histolytica/dispar when temperatures rise above 50°C, with complete death at 56°C, using painted 2-l PET containers.
Significance and Impact of the Study:  Solar disinfection system using PET containers painted black on one side can be used to disinfect water against Giardia duodenalis and Entamoeba histolytica/dispar using natural sunlight.  相似文献   

18.
黄良美  陈蓓  田艳  黄宁  黎宁 《生态学报》2019,39(10):3494-3506
为探明湖库型饮用水源景观结构与涵养功能间的内在机理,优化水源涵养林功能,保护水源安全,借助遥感解译技术得到各用地类型面积并计算水源涵养功能指数,依据取水量和水源涵养量间水量平衡模式计算所需最小森林面积,应用多元数量分析方法探究水源涵养功能指数、景观格局指数、水质指标之间的耦合关系。结果表明:(1)水源地3 km缓冲区较500 m缓冲区的水源涵养功能有所下降。(2)用最小面积法优化筛选出以软阔叶林、栎林、硬阔叶林、竹林为主的岸边带森林生态系统可有效提高水源涵养功能,最大限度的满足饮用水源保护区面积、集雨区面积和涵养区面积间的数量关系。(3)水源涵养功能与景观格局、水资源、水质和污染物排放间可建立起通过显著性检验的多元回归拟合模型方程。(4)多维尺度综合分析过程可诊断出南宁市湖库型饮用水源在生态系统稳定性、水资源量和水质方面存在的生态安全与风险隐患问题,建议南宁市开展饮用水源环境综合整治、生态系统保护与修复工作。  相似文献   

19.
BackgroundSelenium (Se) plays an important role in human health, yet Se overexposure or deficiency can lead to deleterious health effects. This study aims to determine the concentration of Se in drinking water and staple cereal grain (maize, wheat, and teff) samples from the Main Ethiopian Rift (MER) Valley, and correspondingly, assesses Se biomarkers and their status as measured in the urine and fingernails of 230 individuals living in 25 MER communities.MethodThe concentration of Se in drinking water and cereal grain (maize, wheat, and teff) samples, and urine and fingernail samples were measured using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Demographic, anthropometric, and elemental concentrations were described by their quartiles and mean ± standard deviations. The 5th and 95th percentiles were used to describe the concentrations Se biomarkers ranges. The Se biomarker distributions in different study communities were further characterized according to Se levels found in drinking water, sex, and age using ANOVA, and multivariate regression. We conducted a correlation analysis (with Pearson correlation coefficient) and fitted a regression to evaluate the associations between these variables.ResultsThe mean concentration of Se in the drinking water samples was 0.66 (range: 0.015–2.64 µg/L; n = 25), and all samples were below the threshold value of 10 μg/L for Se in drinking water set by the World Health Organiation (WHO). In Ethiopia, most rural communities rely on locally produced cereal grains. We found mean Se concentrations (µg/kg) of 357 ± 190 (n = 14), 289 ± 123 (n = 14), and 145 ± 100 (n = 14) in wheat, teff, and maize, respectively. Furthermore, Se concentrations in drinking water showed no significant correlation with biomarker measures, indicating that the primary source of dietary Se is likely from local foods including staple grains. The mean±SD (5th–95th percentiles) of Se concentrations in fingernails and urine among study subjects were 1022 ± 320 (624–1551 µg/kg), and 38 ± 30 (1.9–100 µg/L), respectively.ConclusionA sizeable share of study participants (31%) fell below the lower limits of what is considered the currently accepted Se range of 20–90 µg/L in urine, though relatively few (only 4%) had similarly low fingernail levels. On the other hand, none of the samples reached Se toxicity levels, and the biomarker levels in this study are comparable to results from other studies that find adequate Se. Our results show that Se toxicity or deficiency is unlikely in the study population.  相似文献   

20.
Taste and odor (T & O) episodes always cause strong effects on drinking water supply system. Luanhe River diversion into Tianjin City in China is an important drinking water resource. Massive growth of a benthic filamentous cyanobacterium with geosmin production in the open canal caused a strong earthy odor episode in Tianjin. On the basis of the morphological and molecular identification of this cyanobacterium as Oscillatoria limosa Agardh ex Gomont, the genetic basis for geosmin biosynthesis and factors influencing growth and geosmin production of O. limosa CHAB 7000 were studied in this work. A 2268-bp open reading frame, encoding 755 amino acids, was amplified and characterized as the geosmin synthase gene (geo), followed by a cyclic nucleotide-binding protein gene (cnb). Phylogenetic analysis implied that the evolution of the geosmin genes in O. limosa CHAB 7000 might involve a horizontal gene transfer event. Examination on the growth and geosmin production of O. limosa CHAB 7000 at different light intensities showed that the maximum geosmin production was observed at 10 μmol photons m−2 s−1, while the optimum growth was at 60 μmol photons m−2 s−1. Under three temperature conditions (15 °C, 25 °C, and 35 °C), the maximum growth and geosmin production were observed at 25 °C. Most amounts of geosmin were retained in cells during the growth phase, but high temperature and low light intensity increased the release of geosmin into the medium, implying that O. limosa CHAB 7000 had a high potential harm for the release of geosmin from its cells at these adverse conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号