首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
AbstractThe p53 protein family is the most studied protein family of all. Sequence analysis and structure determination have revealed a high similarity of crucial domains between p53, p63 and p73. Functional studies, however, have shown a wide variety of different tasks in tumor suppression, quality control and development. Here we review the structure and organization of the individual domains of p63 and p73, the interaction of these domains in the context of full-length proteins and discuss the evolutionary origin of this protein family. Facts
  • Distinct physiological roles/functions are performed by specific isoforms.
  • The non-divided transactivation domain of p63 has a constitutively high activity while the transactivation domains of p53/p73 are divided into two subdomains that are regulated by phosphorylation.
  • Mdm2 binds to all three family members but ubiquitinates only p53.
  • TAp63α forms an autoinhibited dimeric state while all other vertebrate p53 family isoforms are constitutively tetrameric.
  • The oligomerization domain of p63 and p73 contain an additional helix that is necessary for stabilizing the tetrameric states. During evolution this helix got lost independently in different phylogenetic branches, while the DNA binding domain became destabilized and the transactivation domain split into two subdomains.
Open questions
  • Is the autoinhibitory mechanism of mammalian TAp63α conserved in p53 proteins of invertebrates that have the same function of genomic quality control in germ cells?
  • What is the physiological function of the p63/p73 SAM domains?
  • Do the short isoforms of p63 and p73 have physiological functions?
  • What are the roles of the N-terminal elongated TAp63 isoforms, TA* and GTA?
Subject terms: X-ray crystallography, Solution-state NMR  相似文献   

5.
From p63 to p53 across p73   总被引:14,自引:0,他引:14  
Most genes are members of a family. It is generally believed that a gene family derives from an ancestral gene by duplication and divergence. The tumor suppressor p53 was a striking exception to this established rule. However, two new p53 homologs, p63 and p73, have recently been described [1, 2, 3, 4, 5 and 6]. At the sequence level, p63 and p73 are more similar to each other than each is to p53, suggesting the possibility that the ancestral gene is a gene resembling p63/p73, while p53 is phylogenetically younger [1 and 2].

The complexity of the family has also been enriched by the alternatively spliced forms of p63 and p73, which give rise to a complex network of proteins involved in the control of cell proliferation, apoptosis and development [1, 2, 4, 7, 8 and 9].

In this review we will mainly focus on similarities and differences as well as relationships among p63, p73 and p53.  相似文献   


6.
We studied p53, p63, p73 protein expression in the orofacial region of five human embryos aged 7-18 weeks of intrauterine development using a three-step immunohistochemical method. Expression of proteins in various locations was evaluated semiquantitatively. A decrease in p53, p63 and p73 proteins occurred in the 13-week-old material with the exception of the tooth germ where a drop in p73 appeared in the ninth week.  相似文献   

7.
8.
9.
The tumor suppressor p53 is commonly mutated in human cancers. However, two homologs of p53, p63 and p73, are frequently over-expressed in tumors and are associated with tumor subtypes, clinical outcomes, and responses to therapy. There are many isoforms of p53, p63, and p73 (the p53 family). Proper detection of and discrimination between the members of this tumor suppressor family in human tissues is of critical importance to cancer research and clinical care. In this study, we assessed the specificity of several commercially available and newly generated p73 antibodies, focusing on antibodies that distinguish between the TAp73 and ?Np73 isoforms by Western analysis, immunohistochemistry, and immunofluorescence. In addition, we found that the pan-p63 and pan-p73 antibodies tested cross-react with p73 and p63 respectively. The results of this study have important implications for analysis of p63 and p73 expression and co-expression in human tumors, and for potential use of these reagents in molecular diagnostics and therapeutic decision-making.  相似文献   

10.
p63 and p73: roles in development and tumor formation   总被引:12,自引:0,他引:12  
The tumor suppressor p53 is critically important in the cellular damage response and is the founding member of a family of proteins. All three genes regulate cell cycle and apoptosis after DNA damage. However, despite a remarkable structural and partly functional similarity among p53, p63, and p73, mouse knockout studies revealed an unexpected functional diversity among them. p63 and p73 knockouts exhibit severe developmental abnormalities but no increased cancer susceptibility, whereas this picture is reversed for p53 knockouts. Neither p63 nor p73 is the target of inactivating mutations in human cancers. Genomic organization is more complex in p63 and p73, largely the result of an alternative internal promoter generating NH2-terminally deleted dominant-negative proteins that engage in inhibitory circuits within the family. Deregulated dominant-negative p73 isoforms might play an active oncogenic role in some human cancers. Moreover, COOH-terminal extensions specific for p63 and p73 enable further unique protein-protein interactions with regulatory pathways involved in development, differentiation, proliferation, and damage response. Thus, p53 family proteins take on functions within a wide biological spectrum stretching from development (p63 and p73), DNA damage response via apoptosis and cell cycle arrest (p53, TAp63, and TAp73), chemosensitivity of tumors (p53 and TAp73), and immortalization and oncogenesis (DeltaNp73).  相似文献   

11.
Structure, function and regulation of p63 and p73   总被引:12,自引:0,他引:12  
  相似文献   

12.
13.
14.
15.
The p53 family member p63 plays an essential role in the developing epithelium, and overexpression of the ΔNp63a isoform is frequently observed in human squamous cell carcinomas (SCCs). These findings have suggested that ΔNp63a might function as an oncogene within squamous epithelial cells. Nevertheless, the mechanism by which ΔNp63a might promote tumorigenesis remains poorly understood, and data from mouse models implies that the p63 locus might in fact function as a tumor suppressor in these same tissues. A recent study using RNA interference in human SCC-derived cell lines shows that ΔNp63a mediates an essential survival function in human SCC cells by virtue of its ability to suppress the pro-apoptotic function of the related p53 family member p73. These findings support an oncogenic role for ΔNp63a and they demonstrate the existence of critical physical and functional interactions between endogenous p53 family members in human cancer. Specific chemotherapeutic agents and future targeted approaches may be able to exploit this pathway to therapeutic advantage.  相似文献   

16.
Functional regulation of p73 and p63: development and cancer   总被引:18,自引:0,他引:18  
  相似文献   

17.
18.
19.
20.
p53 Family members p63 and p73 are SAM domain-containing proteins.   总被引:14,自引:0,他引:14       下载免费PDF全文
Homologs of the tumor suppressor p53, called p63 and p73, have been identified. The p63 and p73 family members possess a domain structure similar to p53, but contain variable C-terminal extensions. We find that some of the C-terminal extensions contain Sterile Alpha Motif (SAM) domains. SAM domains are protein modules that are involved in protein-protein interactions. Consistent with this role, the C-terminal SAM domains of the p63 and p73 may regulate function by recruiting other protein effectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号