首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ida TY  Harder LD  Kudo G 《Annals of botany》2012,109(1):237-246

Background

The production of flowers, fruits and seeds demands considerable energy and nutrients, which can limit the allocation of these resources to other plant functions and, thereby, influence survival and future reproduction. The magnitude of the physiological costs of reproduction depends on both the factors limiting seed production (pollen, ovules or resources) and the capacity of plants to compensate for high resource demand.

Methods

To assess the magnitude and consequences of reproductive costs, we used shading and defoliation to reduce photosynthate production by fully pollinated plants of a perennial legume, Oxytropis sericea (Fabaceae), and examined the resulting impact on photosynthate allocation, and nectar, fruit and seed production.

Key Results

Although these leaf manipulations reduced photosynthesis and nectar production, they did not alter photosynthate allocation, as revealed by 13C tracing, or fruit or seed production. That photosynthate allocation to reproductive organs increased >190 % and taproot mass declined by 29 % between flowering and fruiting indicates that reproduction was physiologically costly.

Conclusions

The insensitivity of fruit and seed production to leaf manipulation is consistent with either compensatory mobilization of stored resources or ovule limitation. Seed production differed considerably between the two years of the study in association with contrasting precipitation prior to flowering, perhaps reflecting contrasting limits on reproductive performance.  相似文献   

2.
Summer-green herbs inhabiting deciduous forests often put out aerial shoots under bright conditions before tree-canopy closure and grow until late summer under the closed canopy. Some of them produce leaves continuously even after the initiation of canopy closure, indicating an exploitation of the low light period. The manner of carbon assimilation during bright and shade periods within a growth season should reflect the seasonal patterns of vegetative growth and reproductive allocation of individual species. We examined the seasonal patterns of assimilation, partitioning of photosynthate between reproduction and storage, and the budget of reproduction of a perennial understory herb, Parasenecio auriculata. Although photosynthetic rates per unit leaf area decreased with the seasonal reduction in light level, net assimilation at the whole-plant level was maintained at a high level even after canopy closure owing to the increase in the total leaf area. Stored resource in tubers contributed to the rapid development of aerial shoots in the early season, and annual tuber growth was completed before flowering. Instant photosynthetic products considerably contributed to the maintenance of flowers but not to fruit development because of low assimilation rate during fruiting. These findings indicated that carbon assimilation during flowering contributes to sexual reproduction without influencing the development of storage organs. Stable carbon assimilation over summer by shade-acclimatized leaves enabled the maintenance of high productivity associated with high sexual reproduction.  相似文献   

3.
Size-related variation in the cost and probability of flowering among shoots within a crown of Vaccinium hirtum was investigated to clarify patterns and regulation of flowering at the shoot-module level, below the level of the individual. The apices of previous-year shoots differentiated into current-year shoots vegetatively (vegetative branches) or became reproductive by developing inflorescences (reproductive branches). Length growth and fate of current-year shoots were determined, and the future potential for reproduction was estimated using a matrix model of shoot dynamics. Reproductive branches had fewer current-year shoots and shorter total shoot lengths and thus had a reduced potential for reproduction compared with vegetative branches, indicating the cost of flowering at the shoot level. This cost of flowering was higher in longer shoots. The probability of the initiation of flowering in a shoot increased with increasing shoot length in shorter shoots, reached a maximum in medium-sized shoots, and decreased in longer shoots. The size-related changes in the probability of flowering at the shoot level can be largely explained by the size-dependent changes in shoot-level resource availability and cost of flowering.  相似文献   

4.
植物的资源分配模式反映了对环境的生态适应对策。2007年整个生长季, 采用生物量法对腾格里沙漠东南缘固沙植被区半灌木油蒿(Artemisia ordosica)地上部分各器官的生长及资源分配格局动态进行了研究。结果表明: 不同时期各器官的生长速率不同, 光合产物在各器官中的分配也不是等量的, 而是按一定的顺序在不同时期有不同的分配中心; 2007年油蒿的营养生长、繁殖输出、生殖枝大小都显著大于年降水量不足其一半的年份, 而繁殖分配和头状花序大小没有差异; 营养器官生物量大的油蒿总的繁殖输出也大, 但生殖期内营养生长和生殖生长既不同时也不等速, 表明资源分配的权衡(Trade-off)是存在的; 固沙植被建立以后, 随着时间延长, 油蒿的当年总生物量、繁殖输出、繁殖器官生物量分配有减小的趋势, 但不显著。  相似文献   

5.
The effect on reproduction of the dynamics of resource allocation was studied in an emergent and masting tree species, Dryobalanops aromatica (Dipterocarpaceae), in a lowland dipterocarp forest in Sarawak, Malaysia. Girdling of the reproductive shoots (5 mm diameter) caused an increase in abortion during the flowering period, but did not affect the fruit set at the middle or final stages of seed maturation. In contrast, 50% defoliation significantly affected fruit setting, but had little effect on flowering. The total leaf area of reproductive shoots was significantly correlated with final fruit set and total fruit mass. Control of the carbohydrate supply to reproductive shoots by girdling and defoliation made no difference to fruit size, but the fruit number was highly sensitive to carbohydrate availability. Total non-structural carbohydrate (TNC) decreased during the flowering period mainly in the branch (P<0.05), but fluctuated little in any organs during fruit maturation. Leaf nitrogen and photosynthetic capacity of the reproductive shoots were not significant variables for reproduction. Our results suggest that D. aromatica uses current photosynthates in the leaves of reproductive shoots as a carbon source during fruit development, but requires stored assimilates in the branch for flowering. However, since TNC was still present in all organs even after flowering, our study also suggests that storage of carbohydrate resources might not be the decisive factor in the occurrence or frequency of flowering in this species.  相似文献   

6.
Low frequency of reproduction among iteroparous organisms is most often observed among female ectothermic vertebrates and is thought to be a strategy used to defer reproductive costs. We assessed reproductive costs of male water snakes ( Nerodia sipedon ) to determine why half of adult males abstain from reproduction each year. There was no evidence of a short-term energetic cost of reproduction. Change in mass did not differ between reproductive and non-reproductive males during the one-month mating season or during the entire four-month activity season. Changes in mass of reproductive males were similar at two sites in which the spatial distribution of females differed. However, there were size-specific differences in growth and survival between reproductive and non-reproductive males. Among reproductive males growth rate decreased with body size at a lower rate than among non-reproductive males. Survival increased with body size for reproductive males, but decreased with body size among non-reproductive males. Most of the differential survival between reproductive and non-reproductive males did not occur during the mating season but rather during hibernation. Size-related differences between reproductive and non-reproductive males may reflect selection having eliminated low quality males from the larger size classes. Overall our results appear most consistent with there being high variance in male quality, such that the best males can bear the cost of reproducing and still grow and survive as well or better than low quality males that abstain from reproduction.  相似文献   

7.
1.  The carbon source for reproduction in plants may differ between flowering and fruiting stages. To clarify how spring ephemerals use current photosynthetic products for reproduction, the allocation patterns of photosynthate at flowering and fruiting and the effects of resource limitation on reproductive performance in Corydalis ambigua were assessed.
2.  A 13C tracing experiment revealed that about 20% of the current photosynthetic carbon was used for reproduction at both flowering and fruiting. The proportion of 13C allocated to fruits was constant irrespective of the light level. In contrast, 13C translocation to tubers increased at fruiting, and this trend was accelerated when plants were shaded.
3.  Defoliation treatment significantly reduced nectar production and tuber mass, while seed production was not affected. Therefore, when carbon assimilation was limited, carbon was preferentially allocated to current reproduction (seeds) rather than to pollinator attraction (nectar) or storage (tuber).
4.  If seed production is partly supported by carbohydrate reserved in the old tissue of tubers, nectar and seed production may not compete strongly for carbon sources. In contrast to the ability of high seed production, the susceptibility of nectar production to current photosynthesis indicates that seed production of this species is basically limited by pollen capture.
5.  Therefore, temporal separation of resource pool for reproduction may mitigate the joint limitation of seed production between pollinator attraction and resource availability. Temporal variation of the sink–source balance of storage organ is crucial to understand the cost of reproduction in perennial plants.  相似文献   

8.
J. R. Obeso 《Ecography》1993,16(4):365-371
The cost of reproduction has been studied in two populations of the polycarpic herb Asphodelus albus under natural conditions The percentage of plants with flowers was determined in four sites and varied markedly among them The occurrence of reproduction was size-dependent, increasing flowering probability with plant size The cost of reproduction was assessed in terms of modular growth in reproductive plants relative to modular growth in vegetative ones I compared the modular growth of vegetative and reproductive plants considering two different densities m each of two populations Neither incidence of flowering nor modular growth were affected by density Flowering plants exhibited a withinramet demographic cost (in terms of modular growth) relative to non-flowering ramets in one population but not in the other This cost was greater in larger plants These results were concordant with the occurrence of flowering at both sites Both populations exhibited size-dependent patterns of allocation to reproduction, but no significant relationships were found between allocation to reproduction and cost of reproduction The data presented demonstrate differences in the cost of reproduction within a species This cost might determine whether a plant begins the reproduction, but probably have no effect on the reproductive allocation since the weight of the reproductive structures was not related to modular growth  相似文献   

9.

Background and Aims

The cost of reproduction in dioecious plants is often female-biased. However, several studies have reported no difference in costs of reproduction between the sexes. In this study, the relative reproductive allocation and costs at the shoot and whole-plant levels were examined in woody dioecious Rhus javanica and R. trichocarpa, in order to examine differences between types of phenophase (i.e. physiological stage of development).

Methods

Male and female Rhus javanica and R. trichocarpa were sampled and the reproductive and vegetative allocation of the shoot were estimated by harvesting reproductive current-year shoots during flowering and fruiting. Measurements were made of the number of reproductive and total current-year shoots per whole plant, and of the basal area increment (BAI). The numbers of reproductive and total current-year shoots per 1-year-old shoot were counted in order to examine the costs in the following year at the shoot level.

Key Results

A female-biased annual reproductive allocation was found; however, the ratio of reproductive current-year shoots per tree and the BAI did not differ between sexes in Rhus javanica and R. trichocarpa. The percentage of 1-year-old shoots with at least one reproductive current-year shoot was significantly male-biased in R. trichocarpa, but not in R. javanica, indicating that there was a relative cost at the shoot level only in R. trichocarpa. The female-biased leaf mass per shoot, an indicator of compensation for costs, was only found in R. javanica.

Conclusions

Relative reproductive costs at the shoot level were detected in Rhus trichocarpa, which has simultaneous leafing and flowering, but not in R. javanica, which has leafing followed by flowering. However, the costs for the whole-plant level were diminished in both species. The results suggest that the phenophase type may produce the different costs for R. javanica and R. trichocarpa through the development of a compensation mechanism.Key words: Modularity, phenology, reproductive allocation, reproductive cost, Rhus javanica, Rhus trichocarpa  相似文献   

10.
This study examined the cost of reproduction and photosynthetic characteristics of the reproductive structures of Spiranthes cernua, an agamospermic, terrestrial orchid. Reproduction was frequent: two-thirds of the plants flowered at least 2 yr in a row and one-fourth of the consecutive-year runs were ~3 yr. Neither a significant decrease in leaf area nor a reduced likelihood of flowering was observed following 1 or 2 yr of inflorescence production. While there was a tendency for plants producing >16 flowers to have decreased size the next year, plants with the greatest number of flowers (31+) were the most likely to reproduce. Leaf and reproductive gas exchange were measured in the field. Low but positive rates of net photosynthesis were documented at all stages of inflorescence development. The average rates of photosynthesis for each stage were: leaves, 9.2 mmol CO2/m2s; inflorescence in bud, 3.7 mmol CO2/m2s; inflorescence in flower, 2.5 mmol CO2/m2s and infructescence, 0.2 mmol CO2/m2s. Based on diurnal gas exchange, the contribution of leaves and reproductive structures to seasonal carbon assimilation was 91.6 and 8.4%, respectively. The role of the inflorescence as a source and sink for carbon assimilation may lower the cost of reproduction and support frequent inflorescence production.  相似文献   

11.
Zotz G  Richter A 《Annals of botany》2006,97(5):745-754
BACKGROUND AND AIMS: This study examined the physiological basis of the cost of reproduction in the epiphytic bromeliad Werauhia sanguinolenta, growing in situ in a tropical lowland forest in Panama. METHODS: Entire mature plants were sampled repeatedly over the course of 2 years, which represents the common interval between reproductive events. Due to the uncertainty concerning the appropriate currency of resource allocation to reproduction, the temporal changes of the contents of total non-structural carbohydrates (TNC) and of all major nutrient elements in different plant parts were studied (stems, green leaves, non-green leaf bases, roots and reproductive structures when present). KEY RESULTS: Although TNC varied with time in all compartments, this variation was more related to seasonal fluctuations than to reproductive status. The contents of the nutrient elements, N, P, K, Mg and S, on the other hand, showed significant differences between reproductive and non-reproductive individuals, while Ca did not change with reproductive status. Differences in nutrient contents were most pronounced in stems. Seeds were particularly enriched in P, much less so in N and the other nutrient elements. Model calculations of nutrient fluxes indicate that a plant needs about 2 years to accumulate the amount of P invested in a fruit crop, while the estimated uptake rates for N were much faster. CONCLUSIONS: Since most mature individuals of this species fruit every other year, it is hypothesized that P is the prime limiting factor for reproduction. These findings therefore add to an increasing body of evidence that P rather than N is limiting growth and reproduction in vascular epiphytes.  相似文献   

12.
Photosynthesis, growth, and carbon partitioning of vigorous coppice shoots were compared with the slower growing intact shoots of Populus maximowiczii × nigra L. MN9 to determine the relationship between carbon partitioning and photosynthetic rate. Relative height growth rate of coppice shoots was 2.2 times that of intact shoots with net photosynthetic rate 1.9 times that of intact shoots. Coppice leaves exported a larger proportion of newly-fixed assimilate (11% compared with 6%) after a 4-h chase. The greater export from coppice leaves was correlated with a greater proportion of [14C]-labelled photosynthate deposited as starch in stems 4 cm below the point of label application. Coppice leaf assimilate levels were reduced to 15% that of leaves on intact plants, but coppice leaves had twice the concentration of labelled sucrose. Carbohydrates constituted 55% of the water-soluble [14C]-labelled photosynthate in leaves of coppice shoots compared with 40% in intact shoots. The results suggest that carbon allocation and partitioning in coppice shoots were altered towards production and export of new assimilate, and support the hypothesis that photosynthetic rate is responsive to sink demand for assimilates.  相似文献   

13.
We investigated seasonal changes in dry mass and CO2 exchange rate in fruit and leaves of the evergreen tree Cinnamomum camphora with the aim of quantitatively determining the translocation balance between the two organs. The fruit dry mass growth peaked in both August and October: the first increase was due to fruit pulp development and the second to seed development. Fruit respiration also increased with the rapid increase in fruit dry mass. Therefore, the carbohydrates required for fruit development showed two peaks during the reproductive period. Fruit photosynthesis was relatively high in early August, when fruit potentially re-fixed 75% of respired CO2, indicating that fruit photosynthesis contributed 15–35% of the carbon requirement for fruit respiration. Current-year leaves completed their growth in June when fruit growth began. Current-year leaves translocated carbohydrates at a rate of approximately 10–25 mg dry weight (dw) leaf−1 day−1 into other organs throughout the entire fruit growth period. This rate of translocation from current-year leaves was much higher than the amount of carbohydrate required for reproduction (ca. 3 mg dw fruit−1 day−1). Given the carbon balance between fruit and current-year leaves, carbohydrates for reproduction were produced within the current-year fruit-bearing shoots. C. camphora would be adaptive for steadily supplying enough amount of carbohydrate to the fruits, as there was little competition for carbohydrates between the two organs. As assimilates by leaves are used for processes such as reproduction and the formation of new shoots, photosynthesis by reproductive organs is considered to be important to compensate for reproductive cost.  相似文献   

14.
Abstract Changes in the uptake and allocation of carbon and nitrogen, after a step-decrease in nutrient availability, were investigated in small birch (Betula pendula Roth). By demonstrating stable nutrition, before and after the decrease in nutrient supply, it was possible to eliminate the effects of plant size and age. Immediately following the step-decrease in nutrient availability, net nitrogen uptake to leaves and the relative rate of increase in shoot area tended to zero. Although photosynthetic rate per shoot area decreased, carbon uptake remained in excess of that used in structural growth and respiration. More of the excess carbon was accumulated as starch in leaves than in roots. After a lag phase, the relative rates of increase in plant dry matter, starch amount, net nitrogen uptake to leaves and shoot area development equalled that of the reduced rate of nutrient supply. It is concluded that the reduction in plant relative growth rate was much more attributable to the reduced allocation of photosynthate to leaf area growth than to the reduction in photosynthesis per shoot area.  相似文献   

15.
Y. Shitaka  T. Hirose 《Oecologia》1998,114(3):361-367
We studied the effects of a change in flowering date on the reproductive output of a short-day annual plant, Xanthium canadense. The flowering date was changed by photoperiodic manipulation to 1 month earlier or later than the natural flowering date. Plants with the natural flowering date attained the highest reproductive output. For those flowering 1 month earlier or later, the reproductive output was decreased by 42% or 23%, respectively. The reproductive output was analyzed as the product of the biomass production during the reproductive period and its allocation to the reproductive organs. Although delay in flowering increased biomass production, it decreased its fractional allocation to the reproductive organs. The highest reproductive output in the natural flowering plants resulted from a compromise between these two effects of flowering. Plants flowering earlier had higher translocation rates to the reproductive organs and accelerated plant senescence. Later flowering caused a reduction in biomass translocation to the reproductive organs and thus extended the reproductive period. These experimental results are discussed in relation to the cost of reproduction and the optimal time for flowering that maximizes the final reproductive output. It is suggested that the natural flowering time maximized the reproductive output while minimizing the cost of reproduction. Received: 11 September 1997 / Accepted: 12 December 1997  相似文献   

16.
The concept of trade-offs between reproduction and other fitness traits is a fundamental principle of life history theory. For many plant species, the cost of sexual reproduction affects vegetative growth in years of high seed production through the allocation of resources to reproduction at different hierarchical levels of canopy organization. We have examined these tradeoffs at the shoot and branch level in an endemic California oak, Quercus lobata, during a mast year. To determine whether acorn production caused a reduction in vegetative growth, we studied trees that were high and low acorn producers, respectively. We observed that in both low and high acorn producers, shoots without acorns located adjacent to reproductive shoots showed reduced vegetative growth but that reduced branch-level growth on acorn-bearing branches occurred only in low acorn producers. The availability of local resources, measured as previous year growth, was the main factor determining acorn biomass. These findings show that the costs of reproduction varied among hierarchical levels, suggesting some degree of physiological autonomy of shoots in terms of acorn production. Costs also differed among trees with different acorn crops, suggesting that trees with large acorn crops had more available resources to allocate for growth and acorn production and to compensate for immediate local costs of seed production. These findings provide new insight into the proximate mechanisms for mast-seeding as a reproductive strategy.  相似文献   

17.
古尔班通古特沙漠三种生境下梭梭种群的生殖分配特征   总被引:1,自引:0,他引:1  
对古尔班通古特沙漠梭梭种群进行样地调查,从各构件生物量分配特征、开花和结果特征、不同发育阶段的生殖分配、同化枝与生殖生物量之间关系等方面研究了3种生境下梭梭种群的生殖分配特征。结果表明:3种生境中各构件生物量分配格局均具有显著差异,且变化趋势不一致,梭梭平均生殖分配在0.64%~1.5%;3种生境下,梭梭开花和结果特征均具有显著差异,表现出砾石生境>沙质生境>土质生境。不同生境梭梭生殖分配均随径级的增加变化不同,砾石生境和沙质生境样地随着径级的增加而降低,而土质生境样地随着径级的增加而增加;不同生境类型下梭梭同化枝、生殖生物量与径级的关系不同;梭梭的生殖分配和同化枝生物量之间呈线性或多项式正相关。  相似文献   

18.
Biological N2 fixation can fulfil the N demand of legumes but may cost as much as 14% of current photosynthate. This photosynthate (C) sink strength would result in loss of productivity if rates of photosynthesis did not increase to compensate for the costs. We measured rates of leaf photosynthesis, concentrations of N, ureides and protein in leaves of two soybean cultivars ( Glycine max [L.] Merrill) differing in potential shoot biomass production, either associated with Bradyrhizobium japonicum strains, or amended with nitrate. Our results show that the C costs of biological N2 fixation can be compensated by increased photosynthesis. Nodulated plants shifted N metabolism towards ureide accumulation at the start of the reproductive stage, at which time leaf N concentration of nodulated plants was greater than that of N-fertilized plants. The C sink strength of N2 fixation increased photosynthetic N use efficiency at the beginning of plant development. At later stages, although average protein concentrations were similar between the groups of plants, maximum leaf protein of nodulated plants occurred a few days later than in N-fertilized plants. The chlorophyll content of nodulated plants remained high until the pod-filling stage, whereas the chlorophyll content of N-fertilized plants started to decrease as early as the flowering stage. These results suggest that, due to higher C sink strength and efficient N2 fixation, nodulated plants achieve higher rates of photosynthesis and have delayed leaf senescence.  相似文献   

19.
I measured the effect of early reproduction on subsequent growth and survival in the alpine perennial wildflower, Polemonium viscosum. Measurements were made over 4 yr on 34 maternal sibships under natural conditions. A significant phenotypic cost of early reproduction characterized the study population. Plants that flowered after only one year's growth had twice as many leaves and 25% more shoots than nonflowering individuals of equal age. However, early flowering decreased leaf number by 18% in the subsequent year and survivorship by 20% after two years relative to changes in leaf number and survival of nonflowering plants. For such trade-offs to shape the further evolution of reproductive schedules, flowering probability and those age-specific components of plant size that represent the energetic currency for reproductive costs must be heritable. Although families showed significant heterogeneity in the probability of early flowering, most (62%) entirely failed to flower. Moreover, phenotypic variation in vegetative size components at ages 1 and 2 had little genetic basis. Only at ages 3 and 4, after vegetative and demographic costs of early reproduction had been incurred, did vegetative size components (leaf length and number, and shoot number) vary significantly among families. Results of this study provide little evidence of a genetically based trade-off between early reproduction and subsequent survival in P. viscosum.  相似文献   

20.
Abe T 《Annals of botany》2002,89(6):675-681
Sexual differences were investigated to determine the significance of flower bud abortion in the dioecious shrub Aucuba japonica Thunb. The mean number of flowers per inflorescence and the mean number of flowering inflorescences (as opposed to aborted inflorescences) per individual were greater in males than in females in 1997 and 1998. Reproductive investment by males was 0.4-times (1997) and 1.4-times (1998) that by females. In addition, females aborted 30.9% (1997) and 42.7% (1998) of their total flower buds without blooming, whereas no male flower buds aborted. One of the architectural traits of this shrub is that in the year that a flower bud is produced at the shoot apex, the shoot will branch into two or more shoots. Thus, there was less sexual difference in the number of current shoots per individual than there was in the number of flowering inflorescences. The relationship between annual growth and reproduction, and the probability of reproduction in the following year, suggested that the higher investment in female reproduction was manifested as a cost for reproductive frequency rather than as a cost for annual growth. The spatial distribution of both males and females was clumped, which may be the result of clonal growth. In addition, overall sex ratios were not skewed and the number of sprouts did not differ significantly between sexes. These results suggested that flower bud abortion by females might reduce sexual dimorphism in terms of clonal growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号