首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boron transport in plants: co-ordinated regulation of transporters   总被引:1,自引:0,他引:1  

Background

The essentiality of boron (B) for plant growth was established >85 years ago. In the last decade, it has been revealed that one of the physiological roles of B is cross-linking the pectic polysaccharide rhamnogalacturonan II in primary cell walls. Borate cross-linking of pectic networks serves both for physical strength of cell walls and for cell adhesion. On the other hand, high concentrations of B are toxic to plant growth. To avoid deficiency and toxicity problems, it is important for plants to maintain their tissue B concentrations within an optimum range by regulating transport processes. Boron transport was long believed to be a passive, unregulated process, but the identification of B transporters has suggested that plants sense and respond to the B conditions and regulate transporters to maintain B homeostasis.

Scope

Transporters responsible for efficient B uptake by roots, xylem loading and B distribution among leaves have been described. These transporters are required under B limitation for efficient acquisition and utilization of B. Transporters important for tolerating high B levels in the environment have also been identified, and these transporters export B from roots back to the soil. Two types of transporters are involved in these processes: NIPs (nodulin-26-like intrinsic proteins), boric acid channels, and BORs, B exporters. It is demonstrated that the expression of genes encoding these transporters is finely regulated in response to B availability in the environment to ensure tissue B homeostasis. Furthermore, plants tolerant to stress produced by low B or high B in the environment can be generated through altered expression of these transporters.

Conclusions

The identification of the first B transporter led to the discovery that B transport was a process mediated not only by passive diffusion but also by transporters whose activity was regulated in response to B conditions. Now it is evident that plants sense internal and external B conditions and regulate B transport by modulating the expression and/or accumulation of these transporters. Results obtained in model plants are applicable to other plant species, and such knowledge may be useful in designing plants or crops tolerant to soils containing low or high B.  相似文献   

2.
The Ypt/Rab proteins are small GTPases, which belong to the Ras superfamily and have been shown to be involved in endo-and exocytosis in mammalian cells and yeast. Using affinity-purified antibodies specific for four Ypt proteins, namely Ypt1p, Ypt4p, Ypt5p and Ypt6p, of the multicellular green alga Volvox carteri (YptVp) and its close unicellular relative Chlamydomonas reinhardtii (YptCp), we examined the abundance of the corresponding antigens during the asexual life cycle of Volvox, and their intracellular localization. The YptV proteins were found in all stages throughout the asexual life cycle and are tightly associated with intracellular membranes. Indirect immunofluorescence revealed that YptV4p, YptV5p and YptV6p are present in perinuclear regions of the cell, indicating an association with the Golgi region. Golgi localization of YptV4p and YptV6p in Volvox was confirmed by immunogold electron microscopy. In contrast, we found Ypt1p associated with the contractile vacuole in both V. carteri and C. reinhardtii. Furthermore, the YptV proteins were also detected along the entire length of the flagella of somatic Volvox cells. This flagellar location was substantiated by western blot analysis of extracts prepared from isolated flagella of both algae. While localization to exocytic compartments is in agreement with the established Ypt/Rab function in intracellular vesicle transport of eukaryotic cells, presence in the algal flagellum is the first hint of a possible role for small G proteins also in motility organelles.  相似文献   

3.
Chlorophylls are the most abundant classes of natural pigments and their biosynthesis is therefore a major metabolic activity in the ecosphere. Two pathways exist for chlorophyll biosynthesis, one taking place in darkness and the other requiring continuous light as a precondition. The key process for Chl synthesis is the reduction of protochlorophyllide (Pchlide). This enzymatic reaction is catalysed by two different enzymes — DPOR (dark-operative Pchlide oxidoreductase) or the structurally distinct LPOR (light-dependent Pchlide oxidoreductase). DPOR which consists of three subunits encoded by three plastid genes in eukaryotes was subject of our study. A short overview of our present knowledge of chlorophyll biosynthesis in Chlamydomonas reinhardtii in comparison with other plants is presented. Presented at the International Symposium Biology and Taxonomy of Green Algae V, Smolenice, June 26–29, 2007, Slovakia.  相似文献   

4.
We have compared shoot responses of agravitropic rice and barley plants to vertical inversion with those of normal ones. When rice plants were vertically inverted, the main stems of a japonica type of rice, cv. Kamenoo, showed negative gravitropism at nodes 2–15 of both elongated and non-elongated intermodes. However, shoots of lazy line of rice, lazy-Kamenoo, bent gravitropically at nodes 11–15 only elongated internodes but not at nodes 2–10 of non-elongated ones. Thus, shoots of Kamenoo responded gravitropically at all stages of growth, whereas shoots of lazy-Kamenoo did not show gravitropic response before heading. In Kamenoo plants, lengths of both leaf-sheath and leaf-blade were shortened by vertical inversion, but those of the vertically inverted plants of lazy-Kamenoo were significantly longer than the plants in an upright position. When agravitropic and normal plants of barley were vertically inverted, the same results as in rice were obtained; elongation of both leaf-sheath and leaf-blade was inhibited in normal barley plants, Chikurin-Ibaragi No. 1, but significantly stimulated in agravitropic plants ofserpentina barley. These results suggest that vertical inversion of rice and barley plants enhances the elongation growth of leaves in the absence of tropistic response.  相似文献   

5.
The Peroxidase Gene Family in Plants: A Phylogenetic Overview   总被引:9,自引:0,他引:9  
The 73 class III peroxidase genes in Arabidopsis thaliana were used for surveying the evolutionary relationships among peroxidases in the plant kingdom. In Arabidopsis, the 73 genes were clustered in robust similarity groups. Comparison to peroxidases from other angiosperms showed that the diversity observed in Arabidopsis preceded the radiation of dicots, whereas some clusters were absent from grasses. Grasses contained some unique peroxidase clusters not seen in dicot plants. We found peroxidases in other major groups of land plants but not in algae. This might indicate that the class III peroxidase gene family appeared with the colonization of land by plants. The present survey may be used as a rational basis for further investigating the functional roles of class III peroxidases.  相似文献   

6.
Detailed studies were made on changes in the quantity of 1.4 MDa rRNA precursor in barley and wheat cultivars with different degrees of frost tolerance. When analysing genotypes with different LT50 values a close negative correlation was found between the quantity of 1.4 MDa molecular mass rRNA precursor and the forst tolerance of the given barley or wheat cultivar. The results suggest that a technique based on low temperature phosphorus incubation at the seedling stage could be suitable for the selection of genotypes on the basis of this character in applied research.  相似文献   

7.
For the assembly of a functional chloroplast, the coordinated expression of genes distributed between nucleus and chloroplasts is a prerequisite. While the nucleus plays an undisputed dominant role in controling biogenesis and functioning of chloroplasts, plastidic signals appear to control the expression of a subset of nuclear genes; the majority of which encodes chloroplast constituents. Tetrapyrrole biosynthesis intermediates are attractive candidates for one type of plastidic signal ever since an involvement of Mg–porphyrins in signaling from chloroplast to nucleus was first demonstrated in Chlamydomonas reinhardtii. Since then, Mg-protoporphyrin IX has been shown to exert a regulatory function on nuclear genes in higher plants as well. Here we review evidence for the role played by tetrapyrroles in inter-organellar communication. We also report on a screening for nuclear genes that may be subject to regulation by tetrapyrroles. This revealed that (i) >HEMA, the gene encoding the first enzyme specific for porphyrin biosynthesis is induced by Mg-protoporphyrin IX, (ii) several nuclear HSP70 genes are regulated by tetrapyrroles. Members of the gene family induced by the feeding of Mg–rotoporphyrin IX encode chaperones located in either the chloroplast or the cytosol. These results point to an important role of Mg–tetrapyrroles as plastidic signal in controling the initial step of porphyrin biosynthesis, and the synthesis of chaperones involved in protein folding in cytosol/stroma, protein transport into organelles, and the stress response.  相似文献   

8.
RNA-degrading enzymes play an important role in regulating gene expression, and sequence analyses have revealed significant homology among several plant RNA-degrading enzymes. In this study we surveyed crude extracts of the above-ground part of the common wheat (Triticum aestivum L.) and the cultivated barley (Hordeum vulgare L.) for major RNA-degrading enzymes using a substrate-based SDS-PAGE assay. Fifteen wheat and fourteen barley RNA-degrading enzymes, with apparent molecular masses ranging from 16.3 to 40.1 kD, were identified. These RNA-degrading enzymes were characterized by their response to pH changes and addition of EDTA and ZnCl2 to the preincubation or incubation buffers. The 33.2- to 40.1-kD wheat and barley, 31.7-kD wheat, and 32.0-kD barley enzyme activities were inhibited by both zinc and EDTA and were relatively tolerant to alkaline environment. The 22.7- to 28.2-kD enzymes were inhibited by zinc but stimulated by EDTA. The 18.8-kD enzyme exists in both wheat and barley. It was active in an acid environment, was inhibited by zinc, but was not affected by EDTA. Two enzyme activities (31.0 and 32.0 kD) are unique to the common wheat. Contribution from Agriculture Research Division, University of Nebraska, Journal Series No. 9895.  相似文献   

9.
The efficiency of translation initiation at codons differing at one or two nucleotides from AUG was tested as initiation codons for the phosphinotricin-acetyltransferase gene in T-DNA plant transformation in Arabidopsis thaliana. With the exception of UUA codon that differs from AUG at two nucleotides and does not permit any detectable activity, all the other codons (AUC, GUG, ACG, and CUG) present a phosphinotrycin acetyltransferase activity that varies between 5 and 10% of the AUG activity. This low activity is sufficient to confer glufosinate resistance to some of the plants. These results indicate that, in plants as is the case in animals, non-AUG initiating codons may be used for translation initiation, namely when a low expression rate is needed.  相似文献   

10.
We review some general points about comparative mapping, the evolution of gene families and recent advances in the understanding of angiosperm phylogeny. These are considered in relation to studies of large-genome cereals, particularly barley (Hordeum vulgare) and wheat (Triticum aestivum), with reference to methods of gene isolation. The relative merits of direct map-based cloning in barley and wheat, utilization of the smaller genome of rice (Oryza sativa) and gene homology methods that utilize information from model species such as Arabidopsis thaliana are briefly discussed.  相似文献   

11.
Carnitine is associated with fatty acid metabolism in plants   总被引:1,自引:0,他引:1  
The finding of acylcarnitines alongside free carnitine in Arabidopsis thaliana and other plant species, using tandem mass spectrometry coupled to liquid chromatography shows a link between carnitine and plant fatty acid metabolism. Moreover the occurrence of both medium- and long-chain acylcarnitines suggests that carnitine is connected to diverse fatty acid metabolic pathways in plant tissues. The carnitine and acylcarnitine contents in plant tissues are respectively a hundred and a thousand times lower than in animal tissues, and acylcarnitines represent less than 2% of the total carnitine pool whereas this percentage reaches 30% in animal tissues. These results suggest that carnitine plays a lesser role in lipid metabolism in plants than it does in animals.  相似文献   

12.
Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria   总被引:4,自引:0,他引:4  
Mitochondria isolated from the roots of barley (Hordeum vulgare L.) and rice (Oryza sativa L.) seedlings were capable of oxidizing external NADH and NADPH anaerobically in the presence of nitrite. The reaction was linked to ATP synthesis and nitric oxide (NO) was a measurable product. The rates of NADH and NADPH oxidation were in the range of 12–16 nmol min−1 mg−1 protein for both species. The anaerobic ATP synthesis rate was 7–9 nmol min−1 mg−1 protein for barley and 15–17 nmol min−1 mg−1 protein for rice. The rates are of the same order of magnitude as glycolytic ATP production during anoxia and about 3–5% of the aerobic mitochondrial ATP synthesis rate. NADH/NADPH oxidation and ATP synthesis were sensitive to the mitochondrial inhibitors myxothiazol, oligomycin, diphenyleneiodonium and insensitive to rotenone and antimycin A. The uncoupler FCCP completely eliminated ATP production. Succinate was also capable of driving ATP synthesis. We conclude that plant mitochondria, under anaerobic conditions, have a capacity to use nitrite as an electron acceptor to oxidize cytosolic NADH/NADPH and generate ATP.  相似文献   

13.
Melis A 《Planta》2007,226(5):1075-1086
Unicellular green algae have the ability to operate in two distinctly different environments (aerobic and anaerobic), and to photosynthetically generate molecular hydrogen (H2). A recently developed metabolic protocol in the green alga Chlamydomonas reinhardtii permitted separation of photosynthetic O2-evolution and carbon accumulation from anaerobic consumption of cellular metabolites and concomitant photosynthetic H2-evolution. The H2 evolution process was induced upon sulfate nutrient deprivation of the cells, which reversibly inhibits photosystem-II and O2-evolution in their chloroplast. In the absence of O2, and in order to generate ATP, green algae resorted to anaerobic photosynthetic metabolism, evolved H2 in the light and consumed endogenous substrate. This study summarizes recent advances on green algal hydrogen metabolism and discusses avenues of research for the further development of this method. Included is the mechanism of a substantial tenfold starch accumulation in the cells, observed promptly upon S-deprivation, and the regulated starch and protein catabolism during the subsequent H2-evolution. Also discussed is the function of a chloroplast envelope-localized sulfate permease, and the photosynthesis–respiration relationship in green algae as potential tools by which to stabilize and enhance H2 metabolism. In addition to potential practical applications of H2, approaches discussed in this work are beginning to address the biochemistry of anaerobic H2 photoproduction, its genes, proteins, regulation, and communication with other metabolic pathways in microalgae. Photosynthetic H2 production by green algae may hold the promise of generating a renewable fuel from nature’s most plentiful resources, sunlight and water. The process potentially concerns global warming and the question of energy supply and demand.  相似文献   

14.
Dynamics of CO2 evolution at low pressure was studied in barley, maize, pea, wheat and pine seedlings using the gas exchange system with laser photoacoustic spectrometer. The CO2 evolution from plant surfaces to environment increased with decreasing air pressure. Simultaneously the changes in activities of phosphoenolpyruvate carboxylase, glucose-6-phosphate dehydrogenase, glyceraldehyde phosphate dehydrogenase, alcohol-dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase in pea and maize leaves were observed. The response depended on plant species used as well as on air pressure and period of its action  相似文献   

15.
A suitable form of iron supplement in the induction medium was found to be important for further development of induced pollen embryos in barley and wheat cultivars (genotypes), especially those providing few green plants viain vitro androgenesis. Genotypes able to regenerate many green plants were less susceptible to the lack of iron in induction medium. Although Fe-EDTA was found to be a suitable form of iron in the induction medium, androgenesis was also induced on media containing non-chelated iron (Fe2+ and Fe3+ ions). EDTA alone without iron inhibited the androgenic response even in the wheat cv. Florida, a model cultivar for androgenesis in wheat. In all barley cultivars under study including cv. Igri, a model cultivar for androgenesis in barley, EDTA alone caused an almost total suppression of androgenesis. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Information about the molecular mechanisms of metal transport in algae is scarce, despite the significant status these organisms have in aquatic ecosystems. In the present study, we describe the cloning and functional characterization of a divalent metal transporter (named DMT1) in the green microalga Chlamydomonas reinhardtii Dangeard. The longest open reading frame of the cloned DMT1 cDNA encodes a protein of 513 amino acids with 11 putative transmembrane domains. The protein belongs to the Nramp family of divalent metal transporters and shows surprisingly higher similarity to some prokaryotic than to eukaryotic polypeptides. Especially the N-terminus, which is longer than of every other homologue considered in this study, displays – uniquely among selected eukaryotic Nramps – exclusively prokaryotic characteristics. Functional complementation experiments in yeast strains with impaired metal transport systems, revealed that C. reinhardtii DMT1 has a broad specificity, acting in the transport of several divalent metals (manganese, iron, cadmium, copper), but excluding zinc. Published online December 2004  相似文献   

17.
Using a wheat seed bio assay, the phytotoxicity of extracts obtained from wheat and rice rhizosphere soils was determined. The wheat rhizosphere soil extract was found to show phytotoxic effects. More allelopathic materials were found from the wheat-rice rotation soils than from the rice soil. Extracts obtained under basic conditions (pH 8) were found to be more inhibitory than those obtained by acid extraction (pH 5). Wheat straw was found also to contain phytotoxic substances. A comparison of two methods in concentrating the aqueous extracts, rotary evaporation and lyophilization, indicates that the former contained more substances with phytotoxic effects.  相似文献   

18.
Summary Two families each of wheat (Triticum aestivum L.), barley (Hordeum vulgare L.) and maize (Zea mays L.) were studied for mitochondrial heterosis and in vitro mitochondrial complementation. Inbred parents and their hybrids were compared for seedling heights and rate of oxygen uptake by the whole tissue to find out if the hybrids showed greater growth and respiratory activity at the seedling stage. Further comparisons were made by isolating mitochondria from the seedling tissues and measuring their ADP0 ratio, respiratory control ratio and cytochrome c oxidase activity for mitochondrial heterosis. Mixtures of parental mitochondria were similarly compared with parental and hybrid mitochondria for in vitro mitochondrial complementation. No evidence for mitochondrial heterosis or in vitro mitochondrial complementation was found, nor any correlation between the different mitochondrial parameters, seedling heights or rates of oxygen uptake by seedling tissue. The suggested use of mitochondrial heterosis and in vitro mitochondrial complementation for plant breeding is discussed.Data for this paper is taken from the author's dissertation written as a part of Ph.D. degree requirements at the Biology Department, Texas A & M University, College Station, Texas  相似文献   

19.
20.
The effect of selenium on sulfur uptake by barley and rice   总被引:9,自引:1,他引:8  
Because of their chemical and physical similarities, plant uptake of S and Se are closely related. Barley (Hordeum vulgare L.) and rice (Oryza sativa L.) were grown in greenhouse solution culture to examine the synergistic interactions between SO4 and Se6+ in plant uptake. In the presence of low concentrations of solution SO4, shoot and root yields were decreased with additions of Se6+. However, when SO4 was present in elevated concentrations, no Se-induced yield reduction occurred. A synergistic interaction between SO4 and Se6+ caused an increase in the shoot S concentrations with increasing concentrations of Se6+ at low SO4 solution concentrations. At elevated SO4 concentrations, no synergism was osberved. Selenium had a lesser effect on the S concentration in plant roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号