首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
精神分裂症是一种复杂的精神疾病,全世界约有1%的人患有这种疾病。以往的研究发现,精神分裂症患者的脑容量比正常人小,且一些精神分裂症易感基因的DNA序列多态性也同时与脑的结构异常有关,这与精神分裂症的神经发育假说是吻合的。最近研究发现,人的DKK4基因的SNP(rs2073665)与精神分裂症显著相关。为了研究DKK4精神分裂症易感SNP是否与脑发育相关,本文检测了961个正常人rs2073665的基因型并测量了他们的脑容量。相关性分析发现,rs2073665在加性模型下和显性模型下都与脑容量存在显著相关性,这为精神分裂症易感基因同时能影响脑容量提供了证据,同时也为精神分裂症的神经发育异常假说提供了佐证。  相似文献   

2.
目的:探讨神经调节素1(NRG1)基因多态性与精神分裂症的相关性.方法:利用基于适配器连接介导的等位基因特异性扩增法.对精神分裂症易感基因NRG1进行多重SNP分析.选择NRG1基因中的rs2919391,rs2954041,rs2919392,rs7838692,rs2919394和rs2919393共六个SNP位点,检测了101个正常人样本和103个精神分裂症患者样本.结果:分析的5个SNP位点基因频率与基因型分布在正常人与精神分裂症患者之间未显示显著差异.结论:5个研究的SNP位点显示NRG1基因与所研究的精神分裂症患者不存在相关性.  相似文献   

3.
Liu XY  Li M  Yang SY  Su B  Yin LD 《动物学研究》2011,32(5):499-503
精神分裂症是一种常见的复杂精神疾病.大量的实验证据表明,遗传因素在精神分裂症的发生中起到了重要的作用.截至目前,有报道称至少100个基因与精神分裂症相关,但它们在不同人群中的重复性不好.在这些基因中,RELN在多个人群中都被证实与精神分裂症相关,表明它可能是一个真实的易感基因.目前,在RELN基因上有很多个单核苷酸多态性位点被证实与精神分裂症相关,其中研究最多的是通过全基因组关联分析发现的在RELN基因第四个内含子中的单核苷酸多态性位点rs7341475,它被证明与精神分裂症的发生相关.为了验证该位点在中国人群中是否与精神分裂症相关,作者对来自中国玉溪的病例——对照样本(400位患者和400位正常人)进行了遗传分析.结果显示,在该样本中rs7341475与精神分裂症不相关,这表明rs7341475在中国人群中可能不是致病多态性位点.  相似文献   

4.
骨质疏松症是一种典型的多基因复杂疾病,遗传力高达85%,其发病率已跃居常见疾病的第5位。尽管已经鉴定出大量骨质疏松易感SNP,但大多数SNP位点位于基因组非编码区,且功能机制未知。本研究旨在通过生物信息学分析和功能实验探究骨质疏松非编码功能性易感SNP rs4325274的分子调控机制。首先,通过表观注释发现该SNP所在区域处在增强子上,eQTL和Hi-C分析结果发现SNP调控的潜在靶基因是SOX6;然后,利用多种数据库进行Motif预测,并结合GEO数据库中的ChIP-seq数据分析进行了验证,结果发现转录因子HNF1A更倾向于结合SNP rs4325274-G碱基;进一步通过双荧光素酶报告基因实验验证了该SNP对SOX6基因表达的增强作用;最后,利用shRNA敲低转录因子HNF1A实验,检测靶基因SOX6的表达变化。以上研究结果初步解析了非编码区功能性SNPrs4325274作为增强子远程调控SOX6基因表达的分子机制,为复杂疾病非编码易感SNP的遗传调控研究提供新思路。  相似文献   

5.
多巴胺通路的基因与精神分裂症风险的多位点关联研究   总被引:1,自引:0,他引:1  
精神分裂症是一种严重的精神疾患, 全世界的群体发病率约为1%. 一般认为它是一种复杂的多基因疾病, 其致病因素是多个基因的联合作用. 有证据表明多巴胺递质系统的改变与精神分裂症有关. 为了发现多巴胺代谢通路中的精神分裂症易感基因, 收集了82个精神分裂症病例和108个与之匹配的正常对照, 分析了该人群位于多巴胺代谢通路上的24个基因中的59个单核苷酸多态性(SNPs)位点. 由于传统的单位点关联研究忽视了复杂疾病的多基因致病性的本质, 不考虑易感基因之间的相互作用, 因此提出了一个多位点的关联分析方法, 该方法用致病后验概率度量一个多位点基因型组合的致病风险, 并用一套基于扰动和平均的算法来检测易感的多位点基因型组合和抑制噪声, 避免在结果中包含假阳性位点. 发现了一个三位点的SNP组合, 相应的基因组合为COMTALDH3B1基因, 对精神分裂症高度易感.  相似文献   

6.
自身免疫性甲状腺疾病(autoimmune thyroid disease, AITD)是一种主要由T细胞介导的器官特异性自身免疫性疾病,包括格雷夫斯病(Graves disease, GD)和桥本甲状腺炎(Hashimoto thyroiditis, HT),其发病率与遗传因素紧密相关。本研究旨在确定与AITD相关的易感基因及位点。本研究通过对100例AITD(51例HT和49例GD)患者和50例健康体检者的基因组进行目标区域测序,并对基因多态性与AITD之间的相关性进行了统计学分析,进一步进行连锁分析找到易感基因及相关位点。本研究发现了BACH2基因的5个单核苷酸多态性(single nucleotide polymorphism, SNP)位点(rs12205059、 rs62408219、 rs7742121、 rs7756574、 rs12204886)完全连锁,ARID5B基因10个SNP位点(rs12778514、 rs3740354、 rs3740353、 rs9633555、 rs9633557、 rs9633534、 rs3740352、 rs2393730、 rs...  相似文献   

7.
nrg1和erbb4参与神经系统发育的多个环节,包括在神经元增生、迁移和分化,神经突起的生长和轴突导向,以及突触形成和可塑性等过程中发挥重要作用.同时,nrg1和erbb4还是精神分裂症的2个主要易感基因,在精神分裂症的发病中具有重要作用.抗精神分裂症药物也可能通过作用于神经调节素1-ErbB4信号通路而起到治疗的作用.因此,该信号通路由于其在突触和神经环路发育中的重要作用而备受关注,也成为当前开发新型抗精神分裂症药物的一个重要靶点.  相似文献   

8.
Ning QL  Ma XD  Jiao LZ  Niu XR  Li JP  Wang B  Zhang H  Ma J 《遗传》2012,34(3):307-314
研究表明位于染色体8p21.3区域的EGR3(Early growth response 3)是精神分裂症(Schizophrenia)的重要易感基因,然而,仍有两个病例-对照研究未能验证上述发现。为了研究EGR3基因在我国患者中是否与疾病关联,文章在中国汉族的核心家系中选择EGR3基因座位上的5个SNPs位点(rs1996147、rs1877670、rs3750192、rs35201266和rs7009708)进行基因分型和传递不平衡检验(Transmission disequilibrium test,TDT)。结果表明遗传标记rs1996147和rs3750192分别显示出显著的传递不平衡(2>4.40,P<0.05)。在连锁不平衡分析中,由2个(rs3750192和rs35201266)、3个(rs1877670、rs3750192和rs7009708)以及4个(rs1996147、rs1877670、rs3750192和rs7009708)SNPs位点构建的单倍型均显示与精神分裂症显著性关联(2>7.10,整体P<0.05)。总之,EGR3基因与中国汉族人群精神分裂症遗传易感性相关,后续关于EGR3基因进一步的功能研究将会更好的帮助我们了解该基因在疾病病理学机制中的作用。  相似文献   

9.
研究表明位于染色体8p21.3区域的EGR3(Early growth response 3)是精神分裂症(Schizophrenia)的重要易感基因, 然而, 仍有两个病例-对照研究未能验证上述发现。为了研究EGR3基因在我国患者中是否与疾病关联, 文章在中国汉族的核心家系中选择EGR3基因座位上的5个SNPs位点(rs1996147、rs1877670、rs3750192、rs35201266和rs7009708)进行基因分型和传递不平衡检验(Transmission disequilibrium test, TDT)。结果表明遗传标记rs1996147和rs3750192分别显示出显著的传递不平衡(c2>4.40, P<0.05)。在连锁不平衡分析中, 由2个(rs3750192和rs35201266)、3个(rs1877670、rs3750192和rs7009708)以及4个(rs1996147、rs1877670、rs3750192和rs7009708)SNPs位点构建的单倍型均显示与精神分裂症显著性关联(c2>7.10, 整体P<0.05)。总之, EGR3基因与中国汉族人群精神分裂症遗传易感性相关, 后续关于EGR3基因进一步的功能研究将会更好的帮助我们了解该基因在疾病病理学机制中的作用。  相似文献   

10.
郑燕森  卓林刚  李大力  刘明耀 《遗传》2021,(2):169-181,I0002
炎性肠病在全球范围内发生极其普遍,具有反复发作、难以治愈的特点,也是诱发结直肠癌的高风险因素之一。肠炎的发生与遗传因素密切相关,有报道发现位于GPR35基因座上的多个单核苷酸多态性(single nucleotidepolymorphism,SNP)位点rs4676410、rs3749171和rs3749172与肠炎敏感性高度相关,但是GPR35基因在肠炎的发生发展进程中的功能及相关机制尚没有明确结论。为了研究GPR35在肠炎中的作用,首先通过CRISPR/Cas9技术构建Gpr35敲除小鼠,随后利用DSS诱导的肠炎模型评价Gpr35在肠炎发生中的作用,发现敲除小鼠在体重变化、DAI评分、肠上皮损伤以及炎性细胞浸润等肠炎相关指标显著低于野生型小鼠。为了研究肠炎相关SNP突变对GPR35活性的影响,首先根据rs3749171和rs3749172SNP位点突变信息构建GPR35-T108M和GPR35-S294R两种突变型受体,其次通过多种GPR35下游信号通路活性测试,发现两种突变均能够增强GPR35受体活性。最后通过Westernblotting分析发现相较于野生型小鼠,Gpr35敲除小鼠肠上皮Erk1/2磷酸化水平增加,表明Gpr35敲除后可能通过上调Erk1/2信号通路的方式抑制肠炎的发生发展。综上所述,本研究发现人类肠炎易感的rs3749171和rs3749172位点可能通过激活GPR35及下游信号通路的方式促进肠炎的发生发展,为炎性肠病的治疗提供了潜在的药物作用靶点。  相似文献   

11.
Neurocognitive dysfunction is a core feature of schizophrenia with particularly prominent deficits in verbal episodic memory. The molecular basis of this memory impairment is poorly understood and its relatedness to normal variation in memory performance is unclear. In this study, we explore, in a sample of cognitively impaired schizophrenia patients, the role of polymorphisms in seven genes recently reported to modulate episodic memory in normal subjects. Three polymorphisms (GRIN2B rs220599, GRM3 rs2189814 and PRKCA rs8074995) were associated with episodic verbal memory in both control and patients with cognitive deficit, but not in cognitively spared patients or the pooled schizophrenia sample. GRM3 and PRKCA acted in opposite directions in patients compared to controls, possibly reflecting an abnormal brain milieu and/or adverse environmental effects in schizophrenia. The encoded proteins balance glutamate signalling vs. excitotoxicity in complex interactions involving the excitatory amino acid transporter 2 (EAAT2), implicated in the dysfunctional glutamatergic signalling in schizophrenia. Double carrier status of the GRM3 and PRKCA minor alleles was associated with lower memory test scores and with increased risk of schizophrenia. Single nucleotide polymorphism (SNP) rs8074995 lies within the PRKCA region spanned by a rare haplotype associated with schizophrenia in a recent UK study and provides further evidence of PRKCA contribution to memory impairment and susceptibility to schizophrenia. Our study supports the utility of parsing the broad phenotype of schizophrenia into component cognitive endophenotypes that reduce heterogeneity and enable the capture of potentially important genetic associations.  相似文献   

12.
According to the modern concepts, alterations of apoptosis and its genetic regulation are associated with the etiopathogenesis of schizophrenia, which is observed at both the brain and peripheral blood levels. However, studies of this phenomenon are at the initial stage, and the molecular and cellular mechanisms that underlie the anomalies of the processes of apoptotic cell death in schizophrenia are unclear. In the present study, we determined the levels of apoptotic markers, annexin A5 and H-ficolin proteins, in the sera of patients with chronic and first-episode schizophrenia and healthy subjects to test the proposed relationship between schizophrenia and the rs11575945 (?1C/T) single-nucleotide substitution (functional polymorphism) of Kozak consensus sequence in the regulatory region of the annexin A5 gene. Methods of a solid-phase enzyme-linked immunosorbent assay and polymerase chain reaction with allele-specific primers were used. It was shown that the pathogenesis of schizophrenia is characterized by an increased rate of apoptosis, which is more pronounced in the case of the first-episode neuroleptic-free patients than in the case of chronic patients that receive typical neuroleptic haloperidol. It was also shown that the rs11575945 polymorphism of the annexin A5 gene is associated with schizophrenia, and its minor allele is responsible for higher levels of the annexin A5 protein in the blood and represents one of the risk factors for the development of this disease.  相似文献   

13.
Negative symptoms of schizophrenia, including anhedonia, represent a heavy burden on patients and their relatives. These symptoms are associated with cortical hypodopamynergia and impaired striatal dopamine release in response to reward stimuli. Catechol-O-methyltransferase (COMT) and monoamine oxidase type B (MAO-B) degrade dopamine and affect its neurotransmission. The study determined the association between COMT rs4680 and rs4818, MAO-B rs1799836 and rs6651806 polymorphisms, the severity of negative symptoms, and physical and social anhedonia in schizophrenia. Sex-dependent associations were detected in a research sample of 302 patients with schizophrenia. In female patients with schizophrenia, the presence of the G allele or GG genotype of COMT rs4680 and rs4818, as well as GG haplotype rs4818-rs4680, which were all related to higher COMT activity, was associated with an increase in several dimensions of negative symptoms and anhedonia. In male patients with schizophrenia, carriers of the MAO-B rs1799836 A allele, presumably associated with higher MAO-B activity, had a higher severity of alogia, while carriers of the A allele of the MAO-B rs6651806 had a higher severity of negative symptoms. These findings suggest that higher dopamine degradation, associated with COMT and MAO-B genetic variants, is associated with a sex-specific increase in the severity of negative symptoms in schizophrenia patients.  相似文献   

14.
The α-amino-3-hydroxy-5-methyl-4-propionic acid (AMPA) receptors are important for glutamate synaptic transmission in the central nervous system. Glutamate receptor, ionotropic, AMPA receptor 1 gene (GRIA1) belongs to the family of AMPA receptors. There is increasing evidence that AMPA receptors dysfunction may be related to an increased susceptibility to schizophrenia. The aim of this study was therefore to investigate whether genetic polymorphisms of GRIA1 are associated with schizophrenia and their clinical symptoms (hallucinations and delusions) in Korean population. Five single nucleotide polymorphisms (rs1428920, rs1552834, rs1422889, rs10035143, and rs2926835) of the GRIA1 were genotyped in 218 schizophrenia patients and 380 healthy controls, using a direct sequencing. All patients were evaluated by the Operational Criteria Checklist for Psychotic Illness. The genotype and allelic frequencies of rs1428920 and rs2926835 showed significant association between schizophrenia and controls (rs1428920, permutation p?=?0.008, 0.008; rs2926835, permutation p?=?0.038, 0.041, respectively). A significantly increased risk of schizophrenia was associated with the A allele of rs1428920 and rs2926835 of GRIA1. Furthermore, we found that rs1428920 was weakly associated with hallucinations of schizophrenia, but this significance disappeared after multiple testing (permutation p?=?0.119). These results suggest that GRIA1 polymorphism may have influence upon the risk of developing schizophrenia.  相似文献   

15.
Haploinsufficiency of 22q11 genes including catechol- O -methyltransferase (COMT) and proline dehydrogenase (PRODH) may result in structural and functional brain abnormalities and increased vulnerability to schizophrenia as observed in patients with microdeletions of 22q11. Thus, COMT and PRODH could be modifier genes for schizophrenia. We examined association of polymorphisms in COMT and PRODH with brain anatomy in young patients with schizophrenia and schizoaffective disorder. We acquired structural magnetic resonance imaging data from 51 male patients and genotyped two single nucleotide polymorphisms (SNPs) in the COMT gene and three in the PRODH gene. Statistical Parametric Mapping software and optimized voxel-based morphometry were used to determine regional gray matter (GM) and white matter (WM) density differences, and total GM and WM volume differences between genotype groups. Two nonsynonymous SNPs in the PRODH gene were associated with bilateral frontal WM density reductions and an SNP in the P2 promoter region of COMT (rs2097603) was associated with GM increase in the right superior temporal gyrus. Furthermore, we found evidence for COMT and PRODH epistasis: in patients with a COMT Val allele (rs4680) and with one or two mutated PRODH alleles, we observed increased WM density in the left inferior frontal lobe. Our results suggest that genetic variation in COMT and PRODH has significant effects on brain regions known to be affected in schizophrenia. Further research is needed to investigate the role of 22q11 genes on brain structure and function and their role in vulnerability for schizophrenia.  相似文献   

16.
Several linkage studies across multiple population groups provide convergent support for a susceptibility locus for schizophrenia--and, more recently, for bipolar disorder--on chromosome 6q13-q26. We genotyped 192 European-ancestry and African American (AA) pedigrees with schizophrenia from samples that previously showed linkage evidence to 6q13-q26, focusing on the MOXD1-STX7-TRARs gene cluster at 6q23.2, which contains a number of prime candidate genes for schizophrenia. Thirty-one screening single-nucleotide polymorphisms (SNPs) were selected, providing a minimum coverage of at least 1 SNP/20 kb. The association observed with rs4305745 (P=.0014) within the TRAR4 (trace amine receptor 4) gene remained significant after correction for multiple testing. Evidence for association was proportionally stronger in the smaller AA sample. We performed database searches and sequenced genomic DNA in a 30-proband subsample to obtain a high-density map of 23 SNPs spanning 21.6 kb of this gene. Single-SNP analyses and also haplotype analyses revealed that rs4305745 and/or two other polymorphisms in perfect linkage disequilibrium (LD) with rs4305745 appear to be the most likely variants underlying the association of the TRAR4 region with schizophrenia. Comparative genomic analyses further revealed that rs4305745 and/or the associated polymorphisms in complete LD with rs4305745 could potentially affect gene expression. Moreover, RT-PCR studies of various human tissues, including brain, confirm that TRAR4 is preferentially expressed in those brain regions that have been implicated in the pathophysiology of schizophrenia. These data provide strong preliminary evidence that TRAR4 is a candidate gene for schizophrenia; replication is currently being attempted in additional clinical samples.  相似文献   

17.
Several lines of evidence suggest that alterations in circadian rhythms might be associated with the pathophysiology of psychiatric disorders such as schizophrenia and bipolar disorder (BP). A recent study reported that SIRT1 is a molecule that plays an important role in the circadian clock system. Therefore, to evaluate the association among the SIRT1 gene, schizophrenia and BP, we conducted a case-control study of Japanese population samples (1158 schizophrenia patients, 1008 BP patients and 2127 controls) with four tagging SNPs (rs12778366, rs2273773, rs4746720 and rs10997875) in the SIRT1 gene. Marker-trait association analysis was used to evaluate the allele and the genotype association with the χ(2) test, and haplotype association analysis was evaluated with a likelihood ratio test. We showed an association between rs4746720 in the SIRT1 gene and schizophrenia in the allele and the genotype analysis. However, the significance of these associations did not survive after Bonferroni's correction for multiple testing. On the other hand, the SIRT1 gene was associated with Japanese schizophrenia in a haplotype-wise analysis (global P(all markers) = 4.89 × 10(-15)). Also, four tagging SNPs in the SIRT1 gene were not associated with BP. In conclusion, the SIRT1 gene may play an important role in the pathophysiology of schizophrenia in the Japanese population.  相似文献   

18.
Although the genome wide supported psychosis susceptibility neurogranin (NRGN) gene is expressed in human brains, it is unclear how it impacts brain morphology in schizophrenia. We investigated the influence of NRGN rs12807809 on cortical thickness, subcortical volumes and shapes in patients with schizophrenia. One hundred and fifty six subjects (91 patients with schizophrenia and 65 healthy controls) underwent structural MRI scans and their blood samples were genotyped. A brain mapping algorithm, large deformation diffeomorphic metric mapping, was used to perform group analysis of subcortical shapes and cortical thickness. Patients with risk TT genotype were associated with widespread cortical thinning involving frontal, parietal and temporal cortices compared with controls with TT genotype. No volumetric difference in subcortical structures (hippocampus, thalamus, amygdala, basal ganglia) was observed between risk TT genotype in patients and controls. However, patients with risk TT genotype were associated with thalamic shape abnormalities involving regions related to pulvinar and medial dorsal nuclei. Our results revealed the influence of the NRGN gene on thalamocortical morphology in schizophrenia involving widespread cortical thinning and thalamic shape abnormalities. These findings help to clarify underlying NRGN mediated pathophysiological mechanisms involving cortical-subcortical brain networks in schizophrenia.  相似文献   

19.
Reelin is an extracellular signaling protein that plays an important role in the development of the central nervous system. Post-mortem studies have shown lower reelin protein levels in the brains of patients with schizophrenia and bipolar disorder compared with controls. Genetic studies have also shown that mutations in the reelin gene (RELN) increase the risk for schizophrenia and bipolar disorder. We evaluated whether an RELN gene variant, rs362719, which has been associated with increased susceptibility to bipolar disorder, is also associated with susceptibility to schizophrenia. We included 405 Chinese Han schizophrenia patients and 390 controls in our study. The polymorphism was genotyped by PCR and RFLP methods. We found a significant difference in allele frequency distribution (P< 0.05) between schizophrenia patients and controls. The frequency of the A allele was significantly higher in schizophrenia patients than in healthy controls. The effect of SNP rs362719 on allele distribution was significant in female (P < 0.05) but not in male participants (P = 0.473). Besides the gender factor, demographic and clinical characteristics of the rs362719 genotype groups were also analyzed using the chi-square test, but no significant differences were found. We conclude that rs362719 of the RELN gene is associated with susceptibility to schizophrenia in Chinese Han, possibly through a gender-specific mechanism. Further studies will be needed to confirm this genetic risk factor for schizophrenia.  相似文献   

20.
Ovadia G  Shifman S 《PloS one》2011,6(5):e19955
Reelin plays an important role in the development and function of the brain and has been linked to different neuropsychiatric diseases. To further clarify the connection between reelin and psychiatric disorders, we studied the factors that influence the expression of reelin gene (RELN) and its different isoforms. We examined the total expression of RELN, allelic expression, and two alternative RELN isoforms in postmortem brain samples from patients with schizophrenia and bipolar disorder, as well as unaffected controls. We did not find a significant reduction in the total expression of RELN in schizophrenia or bipolar disorder. However, we did find a significant reduction of the proportion of the short RELN isoform, missing the C-terminal region in bipolar disorder, and imbalance in the allelic expression of RELN in schizophrenia. In addition, we tested the association between variation in RELN expression and rs7341475, an intronic SNP that was found to be associated with schizophrenia in women. We did not find an association between rs7341474 and the total expression of RELN either in women or in the entire sample. However, we observed a nominally significant effect of genotype-by-sex interaction on the variation in microexon skipping. Women with the risk genotype of rs7341475 (GG) had a higher proportion of microexon skipping, which is the isoform predominant in tissues outside the brain, while men had the opposite trend. Finally, we tested 83 SNPs in the gene region for association with expression variation of RELN, but none were significant. Our study further supports the connection between RELN dysfunction and psychiatric disorders, and provides a possible functional role for a schizophrenia associated SNP. Nevertheless, the positive associations observed in this study needs further replication as it may have implications for understanding the biological causes of schizophrenia and bipolar disorder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号