首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paxillin has been recognized as a focal adhesion adapter protein that participates in the integrin-mediated signaling. An earlier study [Ogawa et al. Biochim. Biophys. Acta 1519 (2001) 235] found that frog paxillin was expressed in the kidney epithelial cell line A6 and localized in the nucleus. Here, in this study, we have found that the expression of frog paxillin is up-regulated in the S phase of cell cycle. The protein became phosphorylated on tyrosine when the cells were grown on vitronectin; the tyrosine phosphorylation was not detectable when the cells were cultured on fibronectin, laminin or poly-D-lysine. On the other hand, MAP kinase was revealed to phosphorylate frog paxillin on serine. Both phosphorylation events, namely on tyrosine and serine, were essential for the nuclear translocation of this protein. Our results suggest that the integrin-mediated signaling pathway and the MAP kinase pathway meet at paxillin.  相似文献   

2.
Extracellular matrix plays a critical role in cellular development by providing signaling cues that direct morphogenesis. In order to study both the cues that natural matrix provides and endothelial cell responses to that information, human fetal lung fibroblasts were used to produce a fibrous three-dimensional matrix. Following the removal of the fibroblasts by detergent extraction, protein and proteoglycan constituents of the remaining matrix were identified by immunofluorescence and immunoblotting. Matrix components included fibronectin, tenascin-C, collagen I, collagen IV, collagen VI, versican, and decorin. Colocalization analysis suggested that fibronectin was a uniquely distributed matrix protein. Morphology, three-dimensional matrix adhesions, and integrin-mediated signaling during vasculogenesis were then studied in human endothelial cells seeded onto the fibroblast-derived matrix. Elongated morphology and decreased cell area were noted, as compared with cells on fibronectin-coated coverslips. Cell-matrix adhesions contained vinculin, pY397-FAK, and pY410-p130Cas, and all of these colocalized more with fibronectin than tenascin-C, collagen I, or collagen VI. Additionally, the endothelial cells remodeled the fibroblast-derived matrix and formed networks of tubes with demonstrable lumens. Matrix adhesions in these tubes also predominantly colocalized with fibronectin. The pattern of membrane type 1 matrix metalloprotease expression in the endothelial cells suggested its involvement in the matrix remodeling that occurred during tubulogenesis. These results indicated that information in fibroblast-derived matrix promoted vasculogenic behavior.  相似文献   

3.
Research in cell signaling often depends on tissue culture, but the artificial substrates used to grow cells in vitro are likely to distort the conclusions, particularly when adhesion-mediated signaling events are investigated. Studies of signal transduction pathways operating in cells grown in three-dimensional (3D) matrices provide a better system, giving a closer insight of the cell signaling in vivo. We compared the steady-state levels of ERK1/2 activity in primary human fibroblasts, induced by cell-derived 3D fibronectin matrix or fibronectin, coated on flat surfaces. 3D environment caused ERK1/2 stimulation concomitant with a 2.5-fold increase in Ras GTP loading and Src activation. Under these conditions FAK autophosphorylation was suppressed. Treatment with Src inhibitor PP2 abolished these effects indicating that 3D fibronectin matrix activated ERK1/2 through Src/Ras/Raf pathway, bypassing FAK. These observations suggest that within in vivo-like conditions Src may have a leading role in the induction of sustained ERK1/2 activation.  相似文献   

4.
Blood vessel formation requires endothelial cell interactions with the extracellular matrix through cell surface receptors, and signaling events that control endothelial cell adhesion, migration, and lumen formation. Laminin-8 (alpha4beta1gamma1) is present in all basement membranes of blood vessels in fetal and adult tissues, but despite its importance in vessel formation, its role in endothelial cell adhesion and migration remains undefined. We examined adhesion and migration of HMEC-1 human microvascular endothelial cells on laminin-8 with an emphasis on the integrin-mediated signaling events, as compared with those on laminin-10/11 and fibronectin. We found that laminin-8 was less potent in HMEC-1 cell adhesion than laminin-1, laminin-10/11, and fibronectin, and mediated cell adhesion through alpha6beta1 integrin. Despite its weak cell-adhesive activity, laminin-8 was as potent as laminin-10/11 in promoting cell migration. Cells adhering to laminin-8 displayed streaks of thin actin filaments and formed lamellipodia at the leading edge of the cells, as observed with cells adhering to laminin-10/11, while cells on fibronectin showed thick actin stress fibers and large focal adhesions. Pull-down assays of GTP-loaded Rho, Rac, and Cdc42 demonstrated that Rac, but not Rho or Cdc42, was preferentially activated on laminin-8 and laminin-10/11, when compared with fibronectin. Furthermore, a dominant-negative mutant of Rac suppressed cell spreading, lamellipodial formation, and migration on laminin-8, but not on fibronectin. These results, taken together, indicate that Rac is activated during endothelial cell adhesion to laminin-8, and is pivotal for alpha6beta1 integrin-mediated cell spreading and migration on laminin-8.  相似文献   

5.
Cell adhesion to the extracellular matrix inhibits apoptosis, but the molecular mechanisms underlying the signals transduced by different matrix components are not well understood. Here, we examined integrin-mediated antiapoptotic signals from laminin-10/11 in comparison with those from fibronectin, the best characterized extracellular adhesive ligand. We found that the activation of protein kinase B/Akt in cells adhering to laminin-10/11 can rescue cell apoptosis induced by serum removal. Consistent with this, wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase, or ectopic expression of a dominant-negative mutant of Akt selectively accelerated cell death upon serum removal. In contrast to laminin-10/11, fibronectin rescued cells from serum depletion-induced apoptosis mainly through the extracellular signal-regulated kinase pathway. Cell survival on fibronectin but not laminin was significantly reduced by treatment with PD98059, a specific inhibitor of mitogen- or extracellular signal-regulated kinase kinase-1 (MEK1) and by expression of a dominant-negative mutant of MEK1. Laminin-10/11 was more potent than fibronectin in preventing apoptosis induced by serum depletion. These results, taken together, demonstrate laminin-10/11 potency as a survival factor and demonstrate that different extracellular matrix components can transduce distinct survival signals through preferential activation of subsets of multiple integrin-mediated signaling pathways.  相似文献   

6.
The organization of the actin cytoskeleton can be regulated by soluble factors that trigger signal transduction events involving the Rho family of GTPases. Since adhesive interactions are also capable of organizing the actin-based cytoskeleton, we examined the role of Cdc42-, Rac-, and Rho-dependent signaling pathways in regulating the cytoskeleton during integrin-mediated adhesion and cell spreading using dominant-inhibitory mutants of these GTPases. When Rat1 cells initially adhere to the extracellular matrix protein fibronectin, punctate focal complexes form at the cell periphery. Concomitant with focal complex formation, we observed some phosphorylation of the focal adhesion kinase (FAK) and Src, which occurred independently of Rho family GTPases. However, subsequent phosphorylation of FAK and paxillin occurs in a Rho-dependent manner. Moreover, we found Rho dependence of the assembly of large focal adhesions from which actin stress fibers radiate. Initial adhesion to fibronectin also stimulates membrane ruffling; we show that this ruffling is independent of Rho but is dependent on both Cdc42 and Rac. Furthermore, we observed that Cdc42 controls the integrin-dependent activation of extracellular signal–regulated kinase 2 and of Akt, a kinase whose activity has been demonstrated to be dependent on phosphatidylinositol (PI) 3-kinase. Since Rac-dependent membrane ruffling can be stimulated by PI 3-kinase, it appears that Cdc42, PI 3-kinase, and Rac lie on a distinct pathway that regulates adhesion-induced membrane ruffling. In contrast to the differential regulation of integrin-mediated signaling by Cdc42, Rac, and Rho, we observed that all three GTPases regulate cell spreading, an event that may indirectly control cellular architecture. Therefore, several separable signaling pathways regulated by different members of the Rho family of GTPases converge to control adhesion-dependent changes in the organization of the cytoskeleton, changes that regulate cell morphology and behavior.  相似文献   

7.
Hepatocytes isolated by perfusion of adult rat liver and cultured on substrata consisting of one or more of the major components of the liver biomatrix (fibronectin, laminin, type IV collagen) have been examined for the synthesis of defined proteins. Under these conditions, tyrosine amino transferase, a marker of hepatocyte function, is maintained at similar levels in response to dexamethasone over 5 days in culture on each substratum, and total cellular protein synthesis remains constant. By contrast, there is a rapid decrease in synthesis and secretion of albumin and a 3-7-fold increase in synthesis and secretion of alpha-fetoprotein which are most marked on a laminin substratum, but least evident on type IV collagen, and an increased synthesis of fibronectin and type IV collagen. The newly synthesized matrix proteins are present in the cell layer as well as in cell secretions. The enhanced synthesis of fibronectin is less in cells seeded onto a fibronectin substratum than on laminin or type IV collagen substrata, and its synthesis by hepatocytes seeded onto a mixed substratum of laminin and fibronectin is down-regulated by fibronectin in a dose-related manner. Similarly, type IV collagen synthesis is less when the cells are seeded on the homologous matrix protein substratum than on heterologous substrata. These results indicate that hepatocytes cultured in serum-free medium on substrata composed of components of the liver biomatrix maintain certain functions of the differentiated state (tyrosine amino transferase), lose others (albumin secretion) and switch to increased synthesis of matrix components as well as fetal markers such as alpha-fetoprotein. The magnitude of these effects depends on the substratum on which the hepatocytes are cultured.  相似文献   

8.
During hematogenous cancer metastasis, tumor cells separate from a primary mass, enter the bloodstream, disperse throughout the body, migrate across vessel walls, and generate distant colonies. The later steps of metastasis superficially resemble leukocyte extravasation, a process initiated by selectin-mediated cell tethering to the blood vessel wall followed by integrin-mediated arrest and transendothelial migration. Some cancer cells express P-selectin ligands and attach to immobilized P-selectin, suggesting that these cells can arrest in blood vessels using sequential selectin- and integrin-mediated adhesion, as do leukocytes. We hypothesize that selectin binding may regulate subsequent integrin-mediated steps in metastasis. Using a model system of cultured Colo 320 human colon adenocarcinoma cells incubated with soluble P-selectin-IgG chimeric protein, we have found that P-selectin can stimulate activation of the alpha(5)beta(1) integrin resulting in a specific increase of adhesion and spreading of these cells on fibronectin substrates. P-selectin binding also induced activation of p38 mitogen-activated protein kinase (p38 MAPK) and phosphatidylinositol 3-kinase (PI3-K). PI3-K inhibitors blocked P-selectin-mediated integrin activation, cell attachment, and cell spreading. Inhibition of p38 MAPK activation blocked cell spreading, but not cell attachment. P-selectin binding also resulted in formation of a signaling complex containing PI3-K and p38 MAPK. These results suggest that P-selectin binding to tumor cells can activate alpha(5)beta(1) integrin via PI3-K and p38 MAPK signaling pathways leading to increased cell adhesion. We propose that P-selectin ligands are important tumor cell signaling molecules that modulate integrin-mediated cell adhesion in the metastatic process.  相似文献   

9.
10.
Integrins are integral membrane proteins that mediate adhesive interactions of cells with the extracellular matrix and with other cells. Integrin engagement results in activation of intracellular signaling cascades that effect several different cellular responses including motility, proliferation and survival. Although integrins are known to provide cell survival signaling in various types of non-neuronal cells, the possibility that integrins modulate neuron survival has not been explored. We now report data demonstrating a neuroprotective function of integrins in embryonic hippocampal neurons. Neurons grown on laminin, an integrin ligand, exhibit increased resistance to glutamate-induced apoptosis compared with neurons grown on polylysine. Neurons expressed integrin beta1 and treatment of cultures with an antibody against integrin beta1 abolished the protective effect of laminin. Neurons maintained on laminin exhibited a sustained activation of the Akt signaling pathway demonstrated in immunoblot analyses using an antibody that selectively recognizes phosphorylated Akt. The neuroprotective effect of integrin engagement by laminin was mimicked by an IKLLI-containing integrin-binding peptide and was abolished by treatment of neurons with the PI3 kinase inhibitor wortmanin. Levels of the anti-apoptotic protein Bcl-2 were increased in neurons grown on laminin and decreased by wortmanin, suggesting a mechanism for the neuroprotective effect of integrin-mediated signaling. The ability of integrin-mediated signaling to prevent glutamate-induced apoptosis suggests a mechanism whereby neuron-substrate interactions can promote neuron survival under conditions of glutamate receptor overactivation.  相似文献   

11.
Urokinase-type plasminogen activator (uPA) and its receptor (uPAR) participate in matrix degradation and cell migration by focusing proteolysis and functioning as a signaling ligand/receptor complex. uPAR, anchored by a lipid moiety in the membrane, is thought to require a transmembrane adapter to transduce signals into the cytoplasm. To study uPAR signaling, we transfected the prostate carcinoma cell line LNCaP, which does not express endogenous uPA or uPAR, with a uPAR encoding cDNA, resulting in high-level surface expression. We studied migration of these cells on fibronectin, which is mediated by the integrin alpha5beta1. Ligation of uPAR with uPA or its amino-terminal fragment enhanced haptotactic migration to fibronectin. In cells on fibronectin, but not on poly-l-lysine, ligation of uPAR also resulted in tyrosine phosphorylation of several proteins, including two proteins involved in integrin signaling, focal adhesion kinase and the crk-associated substrate p130(Cas). Furthermore, after uPAR ligation, uPAR was co-immunoprecipitated with beta1 integrins from the detergent-insoluble fraction of cell lysates. Thus, our data suggest that uPAR occupancy results in an interaction between uPAR and integrins and a potentiation of integrin-mediated signaling, which leads to enhanced cell migration.  相似文献   

12.
Hepatocytes from adult and 4-week-old rats cultured on one of several extracellular matrix components were stimulated to replicate by epidermal growth factor (EGF). DNA synthesis was increased at 44-48 hr in adult hepatocytes and at 24, 48, and 72 hr in hepatocytes from young rats when EGF was added 2 hr after explantation. When EGF was added at 24 hr, maximal DNA synthesis of adult hepatocytes was observed at 48 hr, whereas that of 4-week-old hepatocytes was seen at 48 and 72 hr. Ten ng EGF per ml was the optimal concentration for maximal DNA synthesis in both adult and young cells. DNA synthesis decreased with increasing cell density, but this effect was less in hepatocytes from young than in those from adults. When hepatocytes were cultured on substrata consisting of individual extracellular matrix components, neither the time that adult cells needed to respond to EGF nor the time from stimulation by EGF to the peak of maximal DNA synthesis was altered in either adult or young cells. The optimal EGF concentration for maximal DNA synthesis and the cell density control of replication were also not altered by the substrata used. Substrata made from each of the extracellular matrix components studied enhanced DNA synthesis of adult and young hepatocytes stimulated by EGF in the following decreasing order: fibronectin, type IV collagen, type I collagen, and laminin. In both adult and young hepatocytes the enhancement of DNA synthesis was greatest when cultured on fibronectin. Thus the initiation and magnitude of DNA synthesis in primary cultures of rat hepatocytes were altered both by the age of the donor and the substratum on which the cells were explanted.  相似文献   

13.
Interaction between cell surface integrin receptors and extracellular matrix (ECM) components plays an important role in cell survival, proliferation, and migration, including tumor development and invasion of tumor cells. Matrix metalloproteinases (MMPs) are a family of metalloproteinases capable of digesting ECM components and are important molecules for cell migration. Binding of ECM to integrins initiates cascades of cell signaling events modulating expression and activity of different MMPs. The aim of this study is to investigate fibronectin–integrin-mediated signaling and modulation of MMPs. Our findings indicated that culture of human cervical cancer cell (SiHa) on fibronectin-coated surface perhaps sends signals via fibronectin–integrin-mediated signaling pathways recruiting focal adhesion kinase (FAK) extracellular signal regulated kinase (ERK), phosphatidyl inositol 3 kinase (PI-3K), integrin-linked kinase (ILK), nuclear factor-kappa B (NF-κB), and modulates expression and activation of mainly pro-MMP-9, and moderately pro-MMP-2 in serum-free culture medium.  相似文献   

14.
Collagen, fibronectin, and nonfibrous protein biosynthesis were examined in cultures of rabbit arterial smooth muscle cells grown on tissue culture plastic precoated either with rabbit plasma fibronectin or bovine serum albumin. Cells seeded into fibronectin-coated wells appeared to reach confluence more quickly than counterparts grown on albumin-coated surfaces. Measurement 3H-thymidine incorporation into DNA by these cultures suggested that this was probably a consequence of more rapid and efficient cell attachment rather than an increased rate of proliferation of smooth muscle cells grown on fibronectin. In preconfluent cultures, the rates of collagen and fibronectin biosynthesis were reduced to 34 and 57%, respectively, on a per-cell basis in cultures grown on fibronectin-coated surfaces compared with cells grown on albumin-coated plasticware. In preconfluent cultures grown on fibronectin-coated surfaces, a greater percentage of the total fibronectin synthesized was incorporated into the cell layer. The distribution of newly synthesized collagen between culture medium and cell layer, however, was not affected by alteration of substratum composition. There was no difference in the rate of synthesis of noncollagen proteins between the two groups of preconfluent cells. In postconfluent cultures the rates of collagen and fibronectin biosynthesis were equivalent in both albumin- and fibronectin-treated cultureware. In preconfluent cultures, analyses of procollagens showed that the overall amounts of both types I and III procollagens were reduced in fibronectin-treated wells, indicating the reduction in collagen synthesis to be general and not type-specific. Although type V procollagen biosynthesis was not detected in either preconfluent group, it was found in postconfluent cultures. The reduction of fibronectin synthesis in cells grown in fibronectin-coated wells was significant as early as 4 hours after plating. Together, these findings suggest that cultured arterial smooth muscle cells are capable of deriving information from their substratum and regulating the biosynthetic rates of extracellular matrix components in response to the immediate needs of the cell.  相似文献   

15.
Integrins are a family of cell surface adhesion molecules which mediate cell adhesion and initiate signaling pathways that regulate cell spreading, migration, differentiation, and proliferation. TGF-beta is a multifunctional factor that induces a wide variety of cellular processes. In this study, we show that, TGF-beta 1 treatment enhanced the amount of alpha 5 beta 1 integrin on cell surface, the mRNA level of alpha 5 subunit, and subsequently stimulated cell adhesion onto a fibronectin (Fn) and laminin (Ln) matrix in SMMC-7721 cells. TGF-beta 1 could also promote cell migration. Furthermore, our results showed that TGF-beta1 treatment stimulated the tyrosine phosphorylation level of FAK, which can be activated by the ligation and clustering of integrins. PTEN can directly dephosphorylate FAK, and the results that TGF-beta 1 could down-regulate PTEN at protein level suggested that TGF-beta 1 might stimulate FAK phosphorylation through increasing integrin signaling and reducing dephosphorylation of FAK. These studies indicated that TGF-beta 1 and integrin-mediated signaling act synergistically to enhance cell adhesion and migration and affect downstream signaling molecules of hepatocarcinoma cells.  相似文献   

16.
Exogenous plasma and endogenous cellular fibronectins on the surface of cultured fibroblasts and in extracellular matrix fibrils were colocalized by fluorescent and high voltage immunoelectron microscopy. Fibroblast cultures grown in the presence or absence of cycloheximide were incubated with exogenous plasma fibronectin labeled with fluorescein isothiocyanate. A monoclonal antibody specific for the EIIIA sequence of cellular fibronectin was used to detect cellular fibronectin. A rabbit antifluorescein antibody identified fluoresceinated plasma fibronectin. In cultures incubated in the presence of cycloheximide, plasma fibronectin was bound to the cell surface and was assembled into extracellular fibrils. In cultures grown in the absence of cycloheximide, plasma and cellular fibronectins were observed in the same matrix fibrils and in the same locations on the cell surface. There was not, however, random admixture of the two proteins.  相似文献   

17.
Angiotensin II (AII) binds to G protein-coupled receptor AT(1) and stimulates extracellular signal-regulated kinase (ERK), leading to vascular smooth muscle cells (VSMC) proliferation. Proliferation of mammalian cells is tightly regulated by adhesion to the extracellular matrix, which occurs via integrins. To study cross-talk between G protein-coupled receptor- and integrin-induced signaling, we hypothesized that integrins are involved in AII-induced proliferation of VSMC. Using Oligo GEArray and quantitative RT-PCR, we established that messages for α(1)-, α(5)-, α(V)-, and β(1)-integrins are predominant in VSMC. VSMC were cultured on plastic dishes or on plates coated with either extracellular matrix or poly-d-lysine (which promotes electrostatic cell attachment independent of integrins). AII significantly induced proliferation in VSMC grown on collagen I or fibronectin, and this effect was blocked by the ERK inhibitor PD-98059, suggesting that AII-induced proliferation requires ERK activity. VSMC grown on collagen I or on fibronectin demonstrated approximately three- and approximately sixfold increases in ERK phosphorylation after stimulation with 100 nM AII, respectively, whereas VSMC grown on poly-d-lysine demonstrated no significant ERK activation, supporting the importance of integrin-mediated adhesion. AII-induced ERK activation was reduced by >65% by synthetic peptides containing an RGD (arginine-glycine-aspartic acid) sequence that inhibit α(5)β(1)-integrin, and by ~60% by the KTS (lysine-threonine-serine)-containing peptides specific for integrin-α(1)β(1). Furthermore, neutralizing antibody against β(1)-integrin and silencing of α(1), α(5), and β(1) expression by transfecting VSMC with short interfering RNAs resulted in decreased AII-induced ERK activation. This work demonstrates roles for specific integrins (most likely α(5)β(1) and α(1)β(1)) in AII-induced proliferation of VSMC.  相似文献   

18.
A variety of agonists including phenylephrine (PE) induce hypertrophy in neonatal ventricular cardiomyocytes. Here we report that signals provided by extracellular matrix proteins (ECM) augment the PE-induced hypertrophic response of cardiomyocytes and provide evidence that ECM-dependent signaling is mediated in part by the protein tyrosine kinase, focal adhesion kinase (FAK). Addition of PE to cultured neonatal cardiomyocytes stimulated sarcomeric organization, increased cell size, and induced atrial natriuretic factor in cardiomyocytes plated on the ECM protein laminin or fibronectin. In contrast, cardiomyocytes plated on the non-adhesive substrate gelatin exhibited a reduced capacity to undergo these PE-stimulated hypertrophic changes. In cardiomyocytes cultured on ECM, PE stimulated a rapid increase in tyrosine phosphorylation of focal adhesion proteins including FAK, paxillin, and p130 Crk-associated substrate and subsequent formation of peripheral focal complexes. Inhibition of the PE-induced hypertrophic response by genistein and herbimycin-A indicated a requirement for protein tyrosine kinases in PE signaling. To determine whether activation of FAK is required for PE-induced hypertrophy, a dominant-interfering mutant form of FAK, termed FRNK (FAK-related non-kinase), was ectopically expressed in cardiomyocytes using a replication-defective adenovirus expression system. FRNK expression attenuated PE-stimulated hypertrophy as assessed by cell size, sarcomeric organization, and induction of atrial natriuretic factor. These data indicate that the signal transduction pathways leading to cardiomyocyte hypertrophy are strongly influenced by and/or dependent upon an integrin-mediated signaling process requiring FAK.  相似文献   

19.
In multicellular organisms, cell behavior is dictated by interactions with the extracellular matrix. Consequences of matrix-engagement range from regulation of cell migration and proliferation, to secretion and even differentiation. The signals underlying each of these complex processes arise from the molecular interactions of extracellular matrix receptors on the surface of the cell. Integrins are the prototypic receptors and provide a mechanical link between extracellular matrix and the cytoskeleton, as well as initiating some of the adhesion-dependent signaling cascades. However, it is becoming increasingly apparent that additional transmembrane receptors function alongside the integrins to regulate both the integrin itself and signals downstream. The most elegant of these examples is the transmembrane proteoglycan, syndecan-4, which cooperates with α(5)β(1)-integrin during adhesion to fibronectin. In vivo models demonstrate the importance of syndecan-4 signaling, as syndecan-4-knockout mice exhibit healing retardation due to inefficient fibroblast migration. In wild-type animals, migration of fibroblasts toward a wound is triggered by the appearance of fibronectin that leaks from damaged capillaries and is deposited by macrophages in injured tissue. Therefore there is great interest in discovering strategies that enhance fibronectin-dependent signaling and could accelerate repair processes. The integrin-mediated and syndecan-4-mediated components of fibronectin-dependent signaling can be separated by stimulating cells with recombinant fibronectin fragments. Although integrin engagement is essential for cell adhesion, certain fibronectin-dependent signals are regulated by syndecan-4. Syndecan-4 activates the Rac1 protrusive signal, causes integrin redistribution, triggers recruitment of cytoskeletal molecules, such as vinculin, to focal adhesions, and thereby induces directional migration. We have looked for alternative strategies for activating such signals and found that low-intensity pulsed ultrasound (LIPUS) can mimic the effects of syndecan-4 engagement. In this protocol we describe the method by which 30 mW/cm(2), 1.5 MHz ultrasound, pulsed at 1 kHz (Fig. 1) can be applied to fibroblasts in culture (Fig. 2) to induce Rac1 activation and focal adhesion formation. Ultrasound stimulation is applied for a maximum of 20 minutes, as this combination of parameters has been found to be most efficacious for acceleration of clinical fracture repair. The method uses recombinant fibronectin fragments to engage α(5)β(1)-integrin, without engagement of syndecan-4, and requires inhibition of protein synthesis by cycloheximide to block deposition of additional matrix by the fibroblasts. The positive effect of ultrasound on repair mechanisms is well documented, and by understanding the molecular effect of ultrasound in culture we should be able to refine the therapeutic technique to improve clinical outcomes.  相似文献   

20.
Normal rat kidney cells were cultured in medium supplemented with normal fetal bovine serum (FBS) or FBS depleted of fibronectin. The cell surface fibronectin of these cultures was visualized by indirect immunofluorescence using species-specific antisera for either rat fibronectin or bovine fibronectin. Anti-rat-fibronectin revealed fibrillar structures on the cells grown in either normal medium or fibronectin-depleted medium. Anti-bovine fibronectin revealed similar fibrillar networks, but only on the cells grown in medium containing bovine fibronectin. Staining in each case was abolished by absorption with the homologous antigen. It appears that exogenous fibronectin was incorporated into the same structures as endogenous fibronectin. This finding suggests that circulating fibronectin may serve as a building block for the assembly of extracellular matrix, possibly by cells which are incapable of synthesizing it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号