首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we report the first comparative study of cold-adapted imidase (EC 3.5.2.2) from the fish (Oreochromis niloticus) liver and its thermophilic counterparts taken from pig liver and Escherichia coli (overexpressed recombinant hydantoinase from Agrobacterium radiobacter NRRL B1). Approximately 6000-fold purification and a 40% yield of fish imidase activity were obtained through ammonium sulfate precipitation, octyl, chelating, DEAE, and hydroxyapatite chromatography. This cold-adapted imidase was characterized by a specific activity 10- to a 100-fold higher than those of its thermophilic counterparts below room temperature (25 degrees C or lower) conditions but less stable at elevated temperatures (40 degrees C or higher). A less organized helical structure (compared to those of pig liver and bacterial imidases) was observed by circular dichroism. Furthermore, maleimide was first identified as a novel substrate of all imidases examined, and confirmed by HPLC and NMR analysis. These results constituted a first study to discover a novel cold-adapted imidase with surprising high activity. These findings might be also helpful for industrial application of imidase.  相似文献   

2.
Enzymatic hydrolysis of the N-iminylamide was investigated in this study. An enzyme possessing N-iminylamidase activity from pig liver was purified to electrophoretic homogeneity. This enzyme was also active, however, with imides and appears to be identical to pig liver imidase. The identification was confirmed by copurification of enzyme activities and by specificities of typical substrates of mammalian imidase, such as phthalimide, dihydrouracil, and maleimide. The hydrolysis of 3-iminoisoindolinone was further analyzed by HPLC, (13)C NMR spectrometry, and LC-MS measurements to determine its chemicoselectivity. All data indicated that this enzyme chemicoselectively catalyzed the hydrolysis of the N-iminylamide to produce the compound bearing the diamine and carboxylate group. The pH profiles of this enzyme suggest that one of the protons of 3-iminoisoindolinone was important to promote the ring-opening process of this substrate. These results constituted a first study on the enzymatic hydrolysis of compounds bearing the N-iminylamide functional group.  相似文献   

3.
Imidase catalyzes the hydrolysis of a variety of imides. The removal of metal from imidase eliminates its activity but does not affect its tetrameric and secondary structure. The reactivation of the apoenzyme with transition metal ions Co(2+), Zn(2+), Mn(2+), and Cd(2+) shows that imidase activity is linearly dependent on the amount of metal ions added. Ni(2+) and Cu(2+) are also inserted, one per enzyme subunit, into the apoimidase, but do not restore imidase activity. Enzyme activity with different metal replaced imidase varies significantly. However, the changes of the metal contents do not appear to affect the pK(a)s obtained from the bell-shaped pH profiles of metal reconstituted imidase. The metal-hydroxide mechanism for imidase action is not supported based on the novel findings from this study. It is proposed that metal ion in mammalian imidase functions as a Lewis acid, which stabilizes the developing negative charge of imide substrate in transition state.  相似文献   

4.
The cyclic-imide-hydrolyzing activity of a prokaryotic cyclic-ureide-hydrolyzing enzyme, D-hydantoinase, was investigated. The enzyme hydrolyzed cyclic imides with bulky substituents such as 2-methylsuccinimide, 2-phenylsuccinimide, phthalimide, and 3,4-pyridine dicarboximide to the corresponding half-amides. However, simple cyclic imides without substituents, which are substrates of imidase (ie.g., succinimide, glutarimide, and sulfur-containing cyclic imides such as 2,4-thiazolidinedione and rhodanine), were not hydrolyzed. The combined catalytic actions of bacterial D-hydantoinase and imidase can cover the function of a single mammalian enzyme, dihydropyrimidinase. Prokaryotic D-hydantoinase also catalyzed the dehyrative cyclization of the half-amide phthalamidic acid to the corresponding cyclic imide, phthalimide. The reversible hydrolysis of cyclic imides shown by prokaryotic D-hydantoinase suggested that, in addition to pyrimidine metabolism, it may also function in cyclic-imide metabolism.  相似文献   

5.
在一株具有环酰亚胺转化活性的真养产碱杆菌112R4中发现了一种特异性的二羧酸单酰胺酰胺水解酶(半酰胺酶),它催化环酰亚胺代谢的第二步反应,将二羧酸单酰胺水解为二羧酸和氨。该酶的底物仅限于此代谢途径的第一个酶——酰亚胺酶的产物二羧酸单酰胺,而对其它的酰胺类化合物没有明显水解活性。真养产碱杆菌112R4中的半酰胺酶和酰亚胺酶在表达上具有相关性,环酰亚胺(如琥珀酰亚胺)和二羧酸单酰胺(如琥珀酰胺酸)对它们有正调控作用,游离氨离子显示出负调控作用,琥珀酸则在酶合成和活性两方面均表现出影响作用。对重组大肠杆菌中表达的半酰胺酶粗酶的部分性质进行了研究。钴离子对半酰胺酶的活性表现出促进作用,比活力提高到3.37倍,表明半酰胺酶可能是一种金属结合酶。  相似文献   

6.
A thermoactive and thermostable levansucrase was purified from a newly isolated thermophilic Bacillus sp. from Thailand soil. The purification was achieved by alcohol precipitation, DEAE-Cellulose and gel filtration chromatographies. The enzyme was purified to homogeneity as determined by SDS-PAGE, and had a molecular mass of 56 kDa. This levansucrase has some interesting characteristics regarding its optimum temperature and heat stability. The optimum temperature and pH were 60 degrees C and 6.0, respectively. The enzyme was completely stable after treatment at 50 degrees C for more than 1 h, and its activity increased four folds in the presence of 5 mM Fe(2+). The optimum temperature for levan production was 50 degrees C. Contrary to other levansucrases, the one presented in this study is able to produce high molecular weight levan at 50 degrees C.  相似文献   

7.
An an initial stage in the study of proteins from thermophilic algae, the enzyme ribulose 1,5-bisphosphate carboxylase 2-phospho-D-glycerate carboxylyase (dimerizing, EC 4.1.1.39) was purified 11-fold from the thermophilic alga Cyandium caldarium, with a 24% recovery. This purified enzyme appeared homogeneous on polyacrylamide gels and could be dissociated into two subunit types of molecular weights 55,000 and 14,900. The optimal assay temperature was 42.5 degrees C, whilst enzyme purified from Chlorella spp. showed maximum activity at 35 degrees C. The thermostability of Cyanidium ribulose 1,5-bisphosphate carboxylase was considerably greater than that of the Chlorella enzyme, and the presence of Mg2+ and HCO-3 further enhanced this heat stability. A break in the Arrhenius plot occured at 20 degrees C for Chlorella ribulose 1,5-bisphosphate carboxylase and 36 degrees C for the enzyme from Cyanidium. It is suggested that the thermostability of Cyanidium ribulose 1,5-bisphosphate carboxylase is a result of an inherent stability of the enzyme molecule which permits efficient CO2 fixation at high temperatures but results in low activity in the mesophilic temperature range.  相似文献   

8.
The enzyme beta-galactosidase was purified from a cold-adapted organism isolated from Antarctica. The organism was identified as a psychotrophic Pseudoalteromonas sp. The enzyme was purified with high yields by a rapid purification scheme involving extraction in an aqueous two-phase system followed by hydrophobic interaction chromatography and ultrafiltration. The beta-galactosidase was optimally active at pH 9 and at 26 degrees C when assayed with o-nitrophenyl-beta-D-galactopyranoside as substrate for 2 min. The enzyme activity was highly sensitive to temperature above 30 degrees C and was undetectable at 40 degrees C. The cations Na+, K+, Mg2+ and Mn2+ activated the enzyme while Ca2+, Hg2+, Cu2+ and Zn2+ inhibited activity. The shelf life of the pure enzyme at 4 degrees C was significantly enhanced in the presence of 0.1% (w/v) polyethyleneimine. The pure beta-galactosidase was also evaluated for lactose hydrolysis. More than 50% lactose hydrolysis was achieved in 8 h in buffer at an enzyme concentration of 1 U/ml, and was increased to 70% in the presence of 0.1% (w/v) polyethyleneimine. The extent of lactose hydrolysis was 40-50% in milk. The enzyme could be immobilized to Sepharose via different chemistries with 60-70% retention of activity. The immobilized enzyme was more stable and its ability to hydrolyze lactose was similar to that of the soluble enzyme.  相似文献   

9.
We examined the effect of the pyridoxal 5'-phosphate (PLP) cofactor on the activity and stability of the psychrophilic alanine racemase, having a high catalytic activity at low temperature, from Bacillus psychrosaccharolyticus at high temperatures. The decrease in the enzyme activity at incubation temperatures over 40 degrees C was consistent with the decrease in the amount of bound PLP. Unfolding of the enzyme at temperatures above 40 degrees C was suppressed in the presence of PLP. In the presence of 0.125 mM PLP, the specific activity of the psychrophilic enzyme was higher than that of a thermophilic alanine racemase, having a high catalytic activity at high temperature, from Bacillus stearothermophilus even at 60 degrees C.  相似文献   

10.
The keratinase production by the thermophilic actinomycete strain Thermoactinomyces candidus was induced by sheep wool as the sole source of carbon and nitrogen in the cultivation medium. For complete digestion of wool by the above strain, both keratinolytic serine proteinase and cellular reduction of disulfide bonds were involved. Evidence was presented that substrate induction was a major regulatory mechanism and the keratinase biosynthesis was not completely repressed by addition of other carbon (glucose) and nitrogen (NH4C1) sources. The enzyme was purified 62-fold by diethylaminoethyl-anion exchange and Sephadex G-75 gel permeation chromatographies. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the purified keratinase is a monomeric enzyme with a molecular mass of 30 kDa. The pH and temperature optima were determined to be 8.6 and 70 degrees C, respectively. The purified thermophilic keratinase catalyses the hydrolysis of a broad range of substrates and displays higher proteolytic activity against native keratins than other proteinases. Ca2+ was found to have a stabilizing effect on the enzyme activity at elevated temperatures.  相似文献   

11.
AIM: An investigation was carried out on the production of alpha-amylase by Bacillus thermooleovorans NP54, its partial purification and characterization. METHODS AND RESULTS: The thermophilic bacterium was grown in shake flasks and a laboratory fermenter containing 2% soluble starch, 0.3% tryptone, 0.3% yeast extract and 0.1% K2HPO4 at 70 degrees C and pH 7.0, agitated at 200 rev min(-1) with 6-h-old inoculum (2% v/v) for 12 h. When the enzyme was partially purified using acetone (80%[v/v] saturation), a 43.7% recovery of enzyme with 6.2-fold purification was recorded. The KM and Vmax (soluble starch) values were 0.83 mg ml(-1) and 250 micromol mg(-1) protein min(-1), respectively. The enzyme was optimally active at 100 degrees C and pH 8.0 with a half-life of 3 h at 100 degrees C. Both alpha-amylase activity and production were Ca2+ independent. CONCLUSIONS: Bacillus thermooleovorans NP54 produced calcium-independent and thermostable alpha-amylase. SIGNIFICANCE AND IMPACT OF THE STUDY: The calcium-independent and thermostable alpha-amylase of B. thermooleovorans NP54 will be extremely useful in starch saccharification since the alpha-amylases used in the starch industry are calcium dependent. The use of this enzyme in starch hydrolysis eliminates the use of calcium in starch liquefaction and subsequent removal by ion exchange.  相似文献   

12.
A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55 degrees C, respectively. The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70 degrees C. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55 degrees C.  相似文献   

13.
beta-Galactosidase from Bacillus stearothermophilus.   总被引:6,自引:0,他引:6  
Several strains of thermophilic aerobic spore-forming bacilli synthesize beta-galactosidase (EC 3.2.1.23) constitutively. The constitutivity is apparently not the result of a temperature-sensitive repressor. The beta-galactosidase from one strain, investigated in cell-free extracts, has a pH optimum between 6.0 and 6.4 and a very sharp pH dependence on the acid side of its optimum. The optimum temperature for this enzyme is 65 degrees C and the Arrhenius activation energy is about 24 kcal/mol below 47 degrees C and 16 kcal/mol above that temperature. At 55 degrees C the Km is 0.11 M for lactose and 9.8 X 10(-3) M for 9-nitrophenyl-beta-D-galactopyranoside. The enzyme is strongly product-inhibited by galactose (Ki equals 2.5 X 10(-3) M). It is relatively stable at 50 degrees C, losing only half of its activity after 20 days at this temperature. At 60 degrees C more than 60% of the activity is lost in 10 min. However, the enzyme is protected somewhat against thermal inactivation by protein, and in the presence of 4 mg/ml of bovine serum albumin the enzyme is only 18% inactivated in 10 min at 60 degrees C. Its molecular weight, estimated by disc gel electrophoresis, is 215 000.  相似文献   

14.
Y Suzuki  Y Terai    S Abe 《Applied microbiology》1978,35(2):258-263
A riboflavin synthetase was purified 51-fold from a thermophilic organism, Bacillus stearothermophilus ATCC 8005, that grew at 40 to 72 degrees C. Some of the properties of the enzyme are: (i) its temperature optimum was 95 degrees C, and the activity was negligible below 40 degrees C; (ii) the Arrhenius plot of the initial reaction rates was concave upward, with a break at 65 degrees C, and the apparent activation energies below and above 65 degrees C were 4.2 X 10(4) and 6.7 X 10(4) J/mol, respectively; (iii) the enzyme was fairly stable up to 60 degrees C without 6,7-dimethyl-8-ribityllumazine; this substance protected the enzyme from inactivation above 60 to 97 degrees C; (iv) the pH range for stability was 6.0 to 10.0 at 26 degrees C and 6.3 to 7.6 at 55 degrees C; (v) the enzyme was highly resistant at 26 degrees C to denaturation in 8 M urea, but the tolerance was extremely low at 55 degrees C; (vi) its molecular weight was estimated at 45,000; (vii) the Km for 6,7-dimethyl-8-ribityllumazine was 23 micrometer at 55 degrees C and 29 micrometer at 75 degrees C; (viii) its pH optimum was 6.7 to 7.2; (ix) 6-methyl-7-hydroxy-8-ribityllumazine was a competitive inhibitor (Ki = 0.18 micrometer); (x) the activity was sensitive to heavy-metal ions and thiol reagents; (xi) the enzyme did not require cofactor or a carbon donor; and (xii) the molar ratio of 6,7-dimethyl-8-ribityllumazine consumption to riboflavin formation was 2 throughout the entire reaction. Properties i through vi distinguish this enzyme from riboflavin synthetases purified by other investigators from mesophilic organisms, Ashbya gossypii, Eremothecium ashbyii, Escherichia coli, yeast, and spinach.  相似文献   

15.
A riboflavin synthetase was purified 51-fold from a thermophilic organism, Bacillus stearothermophilus ATCC 8005, that grew at 40 to 72 degrees C. Some of the properties of the enzyme are: (i) its temperature optimum was 95 degrees C, and the activity was negligible below 40 degrees C; (ii) the Arrhenius plot of the initial reaction rates was concave upward, with a break at 65 degrees C, and the apparent activation energies below and above 65 degrees C were 4.2 X 10(4) and 6.7 X 10(4) J/mol, respectively; (iii) the enzyme was fairly stable up to 60 degrees C without 6,7-dimethyl-8-ribityllumazine; this substance protected the enzyme from inactivation above 60 to 97 degrees C; (iv) the pH range for stability was 6.0 to 10.0 at 26 degrees C and 6.3 to 7.6 at 55 degrees C; (v) the enzyme was highly resistant at 26 degrees C to denaturation in 8 M urea, but the tolerance was extremely low at 55 degrees C; (vi) its molecular weight was estimated at 45,000; (vii) the Km for 6,7-dimethyl-8-ribityllumazine was 23 micrometer at 55 degrees C and 29 micrometer at 75 degrees C; (viii) its pH optimum was 6.7 to 7.2; (ix) 6-methyl-7-hydroxy-8-ribityllumazine was a competitive inhibitor (Ki = 0.18 micrometer); (x) the activity was sensitive to heavy-metal ions and thiol reagents; (xi) the enzyme did not require cofactor or a carbon donor; and (xii) the molar ratio of 6,7-dimethyl-8-ribityllumazine consumption to riboflavin formation was 2 throughout the entire reaction. Properties i through vi distinguish this enzyme from riboflavin synthetases purified by other investigators from mesophilic organisms, Ashbya gossypii, Eremothecium ashbyii, Escherichia coli, yeast, and spinach.  相似文献   

16.
To clarify the characteristics of thermophilic bacteria in cattle manure compost, enzymatic activity and species diversity of cultivated bacteria were investigated at 54, 60, 63, 66 and 70 degrees C, which were dependent on composting temperature. The highest level of thermophilic bacterial activity was observed at 54 degrees C. Following an increase in temperature to 63 degrees C, a reduction in bacterial diversity was observed. At 66 degrees C, bacterial diversity increased again, and diverse bacteria including Thermus spp. and thermophilic Bacillus spp. appeared to adapt to the higher temperature. At 70 degrees C, bacterial activity measured as superoxide dismutase and catalase activity was significantly higher than at 66 degrees C. However, the decomposition rate of protein in the compost was lower than the rate at 66 degrees C due to the higher compost temperature.  相似文献   

17.
Thermoanaerobacter ethanolicus 39E secondary-alcohol dehydrogenase (2 degrees ADH) was optimally active near 90 degrees C displaying thermostability half-lives of 1.2 days, 1.7 h, 19 min, 9.0 min, and 1.3 min at 80 degrees C, 90 degrees C, 92 degrees C, 95 degrees C, and 99 degrees C, respectively. Enzyme activity loss upon heating (90-100 degrees C) was accompanied by precipitation, but the soluble enzyme remaining after partial inactivation retained complete activity. Enzyme thermoinactivation was modeled by a pseudo-first order rate equation suggesting that the rate determining step was unimolecular with respect to protein and thermoinactivation preceded aggregation. The apparent 2 degrees ADH melting temperature (T(m)) occurred at approximately 115 degrees C, 20 degrees C higher than the temperature for maximal activity, suggesting that it is completely folded in its active temperature range. Thermodynamic calculations indicated that the active folded structure of the 2 degrees ADH is stabilized by a relatively small Gibbs energy (triangle upG(stab.)(double dagger) = 110 kJ mol(-1)). 2 degrees ADH catalytic activities at 37 degrees C to 75 degrees C, were 2-fold enhanced by guanidine hydrochloride (GuHCl) concentrations between 120 mM and 190 mM. These results demonstrate the extreme resistance of this thermophilic 2 degrees ADH to thermal or chemical denaturation; and suggest increased temperature or GuHCl levels seem to enhance protein fixability and activity.  相似文献   

18.
黑曲霉F044脂肪酶的分离纯化及酶学性质研究   总被引:9,自引:0,他引:9  
黑曲霉F044脂肪酶发酵上清液经硫酸铵沉淀、透析、DEAESepharoseFastFlow阴离子交换层析和SephadexG-75凝胶过滤层析得到电泳纯的脂肪酶,纯化倍数为73·71倍,活性回收率为34%。对纯化脂肪酶性质研究表明:该脂肪酶分子量约为35~40kD,水解橄榄油的最适温度和最适pH分别为45℃和7·0,在60℃以下和pH2·0~9·0之间有很好的稳定性。该脂肪酶的水解活性对Ca2 表现明显的依赖性,而Mn2 、Fe2 和Zn2 对脂肪酶则有显著的抑制作用。在最适条件下水解pNPP的Km和Vmax分别为7·37mmol/L和25·91μmol/(min·mg)。其N-端的15个氨基酸序列为Ser(Glu/His)-Val-Ser-Thr-Ser-Thr-Leu-Asp-Glu-Leu-Gln-Leu-Phe-Ala-Gln。  相似文献   

19.
When the thermophilic mold Thermoascus aurantiacus var. levisporus was grown in a modified Czapek Dox medium containing casein the filtrate was found to contain proteolytic activity. The maximum production of activity occurred at 50 ° C in a medium containing 8% casein. The filtrate was subjected to ammonium sulfate fractionation and chromatography on DEAE-cellulose. Two proteases were separated. No further work was done on protease II. Protease I was further purified by gel filtration on Sephadex G 100–200. It showed a 40-fold purification with a final recovery of approximately 25%. It is a neutral protease with a pH optimum at 7.0. The optimal activity of the enzyme occurred in 0.02 M phosphate buffer but was completely inhibited at a concentration of 0.1 M. The optimum temperature for casein hydrolysis was found to be 55 ° C. The enzyme was inhibited by Hg++ but was greatly stimulated by Cu++ and mercaptoethanol. Metallo and sulfhydryl agents had no significant effect on enzyme activity.  相似文献   

20.
A thermostable monoacylglycerol lipase [MGLP, EC 3.1.1.23] was purified for the first time from a cell-free extract of the moderately thermophilic Bacillus sp. H-257. The enzyme was purified 3,028-fold to homogeneity by chromatography using Octyl-Sepharose CL-4B, Q-Sepharose FF, and Superose 12 columns. The molecular mass of the MGLP was estimated to be 25 kDa by gel filtration and 24 kDa by SDS-PAGE, suggesting a monomeric protein. The isoelectric point was determined to be 4.66 by isoelectric focusing. The MGLP retained its full activity upon incubation at 60 degrees C for 10 min (pH 7. 3), and was stable at pH 7-10. The optimal temperature for activity at pH 7.5 was 75 degrees C, and the maximum activity was observed from pH 6-8. This enzyme hydrolyzes monoacylglycerols, with the highest activity occurring with 1-monolauroylglycerol. Di- and triacylglycerols, on the other hand, are essentially inert as substrates for the enzyme. The K(m) values for the hydrolysis of 1-monolauroylglycerol, 1-monooleoylglycerol, and 2-monooleoylglycerol were determined to be 140, 83 and 59 mM, respectively. The enzyme was not inhibited by cholate, but was slightly inhibited by Triton X-100 and deoxycholate. The amino acid sequence of the N-terminal region of the enzyme (16 residues) was also determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号