首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organisation of the myofibrils and the sarcoplasmic reticulum in frog slow muscle fibres has been compared with that in twitch fibres. It has been found that the filaments have the same length in the two types of fibre, but that there are differences in their packing: (a) in contrast to the regular arrangement of the I filaments near the Z line in twitch fibres, those in slow fibres are irregularly packed right up to their insertion into the Z line; (b) the Z line itself shows no ordered structure in slow fibres; (c) the fine cross-links seen between the A filaments at the M line level in twitch fibres are not present in slow fibres. The sarcoplasmic reticulum in slow fibres consists of two separate networks of tubules. One set of tubules (diameter about 500 to 800 A) is oriented mainly in a longitudinal direction. The tubules of the other network (diameter about 300 A) are oriented either transversely at approximately Z line level or longitudinally, connecting the transverse tubules. Triads are very rarely found, occurring at only every 5th or 6th Z line of each fibril. The central element of these triads is continuous with the thin tubules. Slow fibres from muscles soaked in ferritin-containing solutions contain ferritin particles in the network of thin tubules, the rest of the sarcoplasm remaining free of ferritin.  相似文献   

2.
The body wall fine structure including the cuticle, hypodermis, and somatic muscles is similar in males of Meloidogyne incognita and Heterodera glycines. The cuticle can be regarded as basically three-layered in both species, but is much thicker in M. incognita than in H. glycines, and differences occur in surface markings. The chordal and interchordal hypodermis is syncytial. Hypodermal tissue pervades the lip region, and lines the stomatal cavity and stylet shaft. Various organelles and structures, some previously undescribed, are concentrated in the chords. Their possible role in lipid metabolism is considered, as well as the probable function of the hypodermis in fornlation of the cephalic framework and stylet. The interchordal hypodermis which encloses peripheral nerves, is periodically transversed by bundles of fibrils which are homologous with the subcuticular striation previously observed in the light microscope. The somatic musculature is meromyarian, and the muscle cells are of the platymyarian type with I, A, and H bands, but without Z bands or T tubules. Thin dense bands are present in the H bands, and appear to be associated with sarcoplasmic reticulum.  相似文献   

3.
Muscles in the body wall, intestinal wall, and contractile hemolymphatic vessels (pseudohearts) of an oligochaete anelid (Eisenia foetida) were studied by electron microscopy. The muscle cells in all locations, except for the outer layer of the pseudohearts, are variants of obliquely striated muscle cells. Cells comprising the circular layer of the body wall possess single, peripherally located myofibrils that occupy most of the cytoplasm and surround other cytoplasmic organelles. The nuclei of the cells lie peripherally to the myofibrils. The sarcomeres consist of thin and thick myofilaments that are arranged in parallel arrays. In one plane of view, the filaments appear to be oriented obliquely to Z bands. Thin myofilaments measure 5–6 nm in diameter. Thick myofilaments are fusiform in shape and their width decreases from their centers (40–45 nm) to their tips (23–25 nm). The thin/thick filament ratio in the A bands is 10. The Z bands consist of Z bars alternating with tubules of the sarcoplasmic reticulum. Subsarcolemmal electron-dense plaques are found frequently. The cells forming the longitudinal layer of the body wall musculature are smaller than the cells in the circular layer and their thick filaments are smaller (31–33 nm centrally and 21–23 nm at the tips). Subsarcolemmal plaques are less numerous. The cells forming the heart wall inner layer, the large hemolymphatic vessels, and the intestinal wall are characterized by their large thick myofilaments (50–52 nm centrally and 27–28 nm at the tips) and abundance of mitochondria. The cells forming the outer muscular layer of the pseudohearts are smooth muscle cells. These cells are richer in thick filaments than vertebrate smooth muscle cells. They differ from obliquely striated muscle cells by possessing irregularly distributed electron-dense bodies for filament anchorage rather than sarcomeres and Z bands and by displaying tubules of smooth endoplasmic reticulum among the bundles of myofilaments. © 1995 Wiley-Liss, Inc.  相似文献   

4.
Twitch and slow muscle fibers, identified morphologically in the garter snake, have been examined in the electron microscope. The transverse tubular system and the sarcoplasmic reticulum are separate entities distinct from each other. In twitch fibers, the tubular system and the dilated sacs of the sarcoplasmic reticulum form triads at the level of junction of A and I bands. In the slow fibers, the sarcoplasmic reticulum is severely depleted in amount and the transverse tubular system is completely absent. The junctional folds of the postsynaptic membrane of the muscle fiber under an "en grappe" ending of a slow fiber are not so frequent or regular in occurrence or so wide or so long as under the "en plaque" ending of a twitch fiber. Some physiological implications of these differences in fine structure of twitch and slow fibers are discussed. The absence of the transverse tubular system and reduction in amount of sarcoplasmic reticulum, along with the consequent disposition of the fibrils, the occurrence of multiple nerve terminals, and the degree of complexity of the post junctional folds of the sarcolemma appear to be the morphological basis for the physiological reaction of slow muscle fibers.  相似文献   

5.
The membrane systems of the cardiac muscle cell of the isopod Cirolana borealis Lilljeborg are described. The sarcolemma invaginates at the level of the Z band, forming transverse tubules. Narrow tubules branch off in a longitudinal direction from these transverse and radially arranged Tz-tubules forming a transverse collar at each A-I level, where dyadic and triadic junctions are formed with the sarcoplasmic reticulum. Two different orientations of the coupling discs have been detected in the supercontracted sarcomere, and this observation has been discussed. Adjacent myofibrils are separated by a double layer of sarcoplasmic reticulum.  相似文献   

6.
THE SARCOPLASMIC RETICULUM OF THE BAT CRICOTHYROID MUSCLE   总被引:2,自引:0,他引:2       下载免费PDF全文
The bat cricothyroid muscle is believed to participate in the production of the short bursts of frequency modulated ultrasound which these animals use as an echolocation device. The evidence seems to indicate that this muscle must be extremely fast acting. It possesses a very well developed sarcoplasmic reticulum, consisting of intercommunicating longitudinal and transverse tubular elements. The transverse elements, situated at the level of the junction between the A and the I bands, are tripartite complexes of tubules called triads, and these are sometimes replaced by more complex structures, the pentads. The intermediate element of the triad appears as a slender continuous tubule, which can be shown to come into close contact with the sarcolemma and also to share with it certain common staining properties. The longitudinal components of the reticulum consist of very numerous tubules which link successive triads to each other and anastomose to form multiple layers of close-meshed reticula in the interfibrillar sarcoplasm. Both the longitudinal and the transverse elements of the sarcoplasmic reticulum form a continuous network across the muscle fiber. It is suggested that the extraordinary development of the sarcoplasmic reticulum in the bat cricothyroid is related to the unusual physiological properties of this muscle.  相似文献   

7.
Summary The membrane systems of the cardiac muscle cell of the amphipod Tmetonyx cicada (O. Fabricius) are described. The sarcolemma invaginates and forms a transverse network of tubules at the level of the Z band. Narrow longitudinal tubules branch from the network and connect to another transverse network of tubules at the H band level, where dyadic and triadic junctions are formed with the sarcoplasmic reticulum. Adjacent myofibrils are normally separated by a well developed double layer of the sarcoplasmic reticulum. In areas where the myofibrils closely approach the outer sarcolemma, peripheral couplings have been found at the level of the H band.  相似文献   

8.
Within ventricular myocardial cells of the mouse, the myoplasmic regions located immediately adjacent to the Z lines of the sarcomeres contain a variety of structures. These include: (1) transversely oriented 10 nm (‘intermediate’) filaments that apparently contribute to the cytoskeleton of the myocardial cell; (2) the majority of the transverse elements of the T-axial tubular system; (3) specialized segments of the sarcoplasmic reticulum (SR) that are closely apposed to the sarcolemma or T-axial tubules (junctional SR); (4) ‘extended junctional SR’ (‘corbular SR’) that exists free of association with the cell membrane; (5) ‘Z tubules’ of SR that are intimately apposed to the Z line substance; and (6) leptofibrils. In addition, fasciae adherentes supplant Z lines where myofibrils insert into the transverse borders (intercalated discs) of the cells. The concentration of these myocardial components at the level of the Z lines suggests that a particular specialization of structural and physiological activities exists in the Z-level regions of the myoplasm. In particular, it appears that the combination of intermediate filaments, T tubules, and Z-level SR elements forms a series of parallel planar bodies that extend across each myocardial cell to impart transverse rigidity. The movement and compartmentation of calcium ion (Ca2+) would seem especially active near the Z lines of the myofibrils, in view of the preferential location there of Ca2+-sequestering myocardial structures such as T tubules, junctional SR, extended junctional SR and Z tubules.  相似文献   

9.
The membrane systems of the cardiac muscle cell of Munida tenuimana G. O. Sars are described. The sarcolemma invaginates at the Z level, forming tubules. Narrow tubules branch off in a longitudinal direction from these transverse and radially arranged tubules, forming a narrow transverse collar at the H level where dyadic and triadic junctions are formed with the sarcoplasmic reticulum.  相似文献   

10.
A new method for isolating transverse tubule membranes from rabbit skeletal muscle has been developed. This procedure has the advantage of being mild, fast, and producing with good yields a purified membrane fraction. The transverse tubule membranes are purified by a discontinuous sucrose density centrifugation after loading contaminating light sarcoplasmic reticulum vesicles with calcium phosphate in the presence of ATP. Immunofluorescence staining of cryostat sections of rabbit psoas muscle with purified goat antibodies directed against the purified membranes shows that the reacting antigens are distributed at the boundary of the A and I bands of the myofibrils where transverse tubules are localized in mammalian muscle. The purified antibodies showed no cross-reactivity with sarcoplasmic reticulum, nor did they show any fluorescence staining of the muscle plasma membrane, indicating that the isolated membranes indeed originate from the transverse tubules. The transverse tubule fraction has a characteristic protein composition distinguishable from that of sarcoplasmic reticulum, a much higher cholesterol content than that of the crude microsomes, plasma membrane, and sarcoplasmic reticulum, and a phospholipid content about twice as high as that of sarcoplasmic reticulum and plasma membrane. The purified transverse tubule membrane has a distinct phospholipid composition with high contents of sphingomyelin and phosphatidylserine. A Mg2+-activated ATPase characteristic of the transverse tubule fraction undergoes a 20-30-fold increase in specific activity during purification. The levels of Ca2+-ATPase activity present in the purified transverse tubule fraction remain comparable to those of sarcoplasmic reticulum even after extensive removal of the latter.  相似文献   

11.
Summary The endocardium of Oniscus asellus L. and Asellus aquaticus L. consists of lipid cells. The epicardium consists of a layer of cells with a vesiculated cytoplasm covered by a thick extracellular fibrous sheet. The myocardium is a single layer of cells, the sarcolemma invaginates at Z disc level forming transverse tubules, and longitudinal tubules branch off from these. At the A-I level' longitudinal tubules form transverse systems, which form couplings with the sarcoplasmic reticulum. The sarcoplasmic reticulum appears as perforated sheets enveloping the myofibrils. Two types of nerve terminal are found: one is embedded in a myocardial cell process, the other lies in a myocardial cell depression. They contain clear and dense-cored synaptic vesicles.This work was supported by grants from the Norwegian Research Council for Science and the Humanities  相似文献   

12.
An electron microscope study has been made of the distribution of membrane couplings between the sarcoplasmic reticulum (SR) and either the plasmalemma or the T tubules in fetal and neonatal rat intercostal muscle. Within primitive muscle cells at 12 days of gestation, the SR forms both simple and specialized membrane junctions with the plasmalemma; caveolae are very few, and T tubules are not detected. Undifferentiated cells neighbor muscle cells. Occasionally these cells contain subsurface couplings between the endoplasmic reticulum and plasmalemmae. Possible relationships between these couplings and the peripheral couplings of muscle cells are discussed. By 15–18 days of gestation, caveolae and beaded T tubules, comparable to those of cultured muscle, develop; T tubules lie along-side myofibrils and are rarely transverse. SR couples both to T tubules and to plasmalemmae during this period. T tubules with lineal profiles appear after further development and their orientation transverse to A–I junctions becomes increasingly evident. Membrane couplings between SR and T tubules also increase in number, whereas the incidence of peripheral coupling declines rapidly Evidence suggests that peripheral couplings are swept into myotubes as caveolae proliferate and T tubules form. SR thus appears to initially couple with the plasmalemma and then to await T tubular growth. This contrasts with the developmental pattern described in cultured chick muscle in which peripheral couplings are not reported and T tubules with diads and triads occur at very primitive stages of muscle differentiation.  相似文献   

13.
The ultrastructural features of cardiac muscle cells and their innervation were examined in the tarantula spider Eurypelma marxi Simon. The cells are transversely striated and have an A band length of about three microns. H zones are indistinct and M lines are absent. Thick and thin myofilament diameters are approximately 200 and 70 Å respectively. Eight to 12 thin filaments usually surround each thick one. Accumulations of thick and thin myofilaments occur perpendicular to the bulk of the myofilaments in some cells. The Z line is discontinuous and thick filaments may pass through the spaces in the Z line. Extensive systems of sarcoplasmic reticulum and transverse tubules are present; these form numerous dyadic junctions in both A and I band regions. Sarcolemmal invaginations form Z line tubules; lateral extensions of the plasma membrane portion of these invaginations form dyads. Nerve branches of the cardiac ganglion make multiple neuromuscular synapses with at least some of the cardiac muscle cells. Both large granular and small agranular vesicles are present in the presynaptic terminals. Intercalated discs similar to those present in other arthropod hearts occur between the ends of adjacent cardiac muscle cells.  相似文献   

14.
Summary The disposition of surface invaginations (clefts, Z and T tubules) and of the sarcoplasmic reticulum has been examined by electron microscopy at three accelerating voltages (100, 200 and 1000 kV) and by phase-contrast light microscopy in crustacean muscles infiltrated by the Golgi stain. In long-sarcomere, tonic type fibers, an extensive system of invaginating clefts has been observed, along with both Z and T tubules. Z and T tubules form interconnections with each other, but only T tubules form specific contacts with the sarcoplasmic reticulum, which in these fibers forms an extended and continuously fenestrated network. In short-sarcomere, phasic type fibers, a ladder-like disposition of an abundant T network is found. Z tubules are absent in these fibers. The sarcoplasmic reticulum forms more frequent junctions with flattened areas of T tubules and with clefts, but has less extensive free surfaces than in the long-sarcomere fibers.We wish to dedicate this paper to the late Graham Hoyle, whose lifetime of work and interest in the study of muscle from a comparative point of view has been an inspiration to us.  相似文献   

15.
Abstract. A light and transmission electron microscope study of sections of cells of—and of cells and tissues of—and of cells, associated with the previously undescribed tymbal muscle of a periodical cicada (Brood X of the 17-year cicada) was undertaken to (i) compare their features with similar features described for other cicada tymbal muscles, (ii) use that information to try to determine cytologically whether the muscle should be considered synchronous or asynchronous, and (iii) seek information about ultrastructural features not previously described for any cicada. In cross section the myofibrils are slightly angular and have an abundance of sarcoplasmic reticulum and T tubules. Longitudinal sections show a pair of T tubules, one of each pair located midway between the Z line and the center (H level) of each sarcomere. These cytological features are consistently found in the tymbal muscles of the majority of other cicada genera and species, which are designated synchronous muscles, and all of which are termed fast muscles. The amount of sarcoplasmic reticulum increases at the Z lines. The largest mitochondria occur in the largest axons, but the smallest axons have more neurotubules per cross-section area. Axon diameters range 0.14–20 μm. Multinucleate adipocytes, with vacuoles that appear either empty or content-containing, and tracheocytes, which could either be binucleate or have a lobate or U-shaped nucleus, are located at the periphery of the muscle. Large numbers of microtubules occur in the interface glia. The diameters of microtubules and neurotubules (∼27 nm) agree closely with the averages usually cited. This study indicates that the tymbal muscles of this cicada should be designated as synchronous, and it describes ultrastructural features that are typical and others that are unusual.  相似文献   

16.
The structure of the surface membrane/transverse tubular (T-tubular) system and of the sarcoplasmic reticulum (SR) of the labial adductor muscle of the honey bee (Apis mellifera) was examined by laser confocal scanning microscopy, after staining with the fluorescent membrane probe DiIC18(3). The following components of the surface membrane/T-tubular system were visualized: transverse tubular networks that are located in the A-band close to the A-I junction and form dyads with the SR, longitudinal tubules that link the T-tubular networks within the between sarcomeres, and surface invaginations of larger diameter that contain tracheoles. The well developed SR forms a dense network of branching and anastomosing tubules in the A-band. A few tubular elements in the interfibrillar space in the I-band link the SR of adjacent sarcomeres. This study demonstrates the advantages of the laser confocal microscope and lipophilic fluorescent dyes for studying the 3-D structure of cellular membrane systems.  相似文献   

17.
Several types of striated muscle have been examined by the technics of electron microscopy and the findings in myotome fibers of Amblystoma larvae, the sartorius, and cardiac muscle of the rat are reported on in some detail. Particular attention has been given to structural components of the interfibrillar sarcoplasm and most especially to a finely divided, vacuolar system known as the sarcoplasmic reticulum. This consists of membrane-limited vesicles, tubules, and cisternae associated in a continuous reticular structure which forms lace-like sleeves around the myofibrils. It shows a definable organization which repeats with each sarcomere of the fiber so that the entire system is segmented in phase with the striations of the associated myofibrils. Details of these repetitive patterns are presented diagrammatically in Text-figs. 1, 2, and 3 on pages 279, 283, and 288 respectively. The system is continuous across the fiber at the H band level and largely discontinuous longitudinally because of interruptions in the structure at the I and Z band levels. The structure of the system relates it to the endoplasmic reticulum of other cell types. The precise morphological relation of the reticulum to the myofibrils, with specializations opposite the different bands, prompts the supposition that the system is functionally important in muscle contraction. In this regard it is proposed that the membrane limiting the system is polarized like the sarcolemma and that the corresponding potential difference is utilized in the intracellular distribution of the excitatory impulse.  相似文献   

18.
The accessory muscle of the walking leg of the horseshoe crab, Tachypleus gigas, was examined electron microscopically. The muscle fibers vary in size but are small in diameter, when compared with other arthropod skeletal muscles. They are striated with A, I, Z and poorly defined H bands. The sarcomere length ranges from 3-10 μm with most sarcomeres in the range of about 6 μm. The myofilaments are arranged in lamellae in larger fibers and less well organized in the smaller ones. Each thick filament is surrounded by 9-12 thin filaments which overlap. The SR is sparse but well organized to form a fenestrated collar around the fibrils. Individual SR tubules are also seen among the myofibrils. Long transverse tubules extend inward from the sarcolemma to form dyads or triads with the SR at the A-I junction. Both dyads and triads coexist in a single muscle fiber, a feature believed to have evolutionary significance. The neuromuscular relationship is unique. In the region of synaptic contact, the sarcolemma is usually elevated to form a large club-shaped structure containing no myofilaments and few other organelles. The axons or axon terminals and glial elements penetrate deep into the club-shaped sarcoplasm and form synapses with the fiber. As many as 13 terminals have been observed within a single section. Synaptic vesicles of two types are found in the axon terminals.  相似文献   

19.
An electron microscope study of sheep myocardial cells has demonstrated the presence of a transverse tubular system, apparently forming a network across the cell at each Z band level. The walls of these tubules resemble the sarcolemma in consisting of two dense layers—plasma membrane and basement menbrane; continuity of the tubule walls with the sarcolemma can be seen when longitudinal sections of a cell are obtained between two subsarcolemmal myofibrils and at the same time perpendicular to the cell surface. The demonstration of communication between the lumen of the transverse tubular system and the extracellular space appears to be more definite in this study than in any work hitherto published. It provides anatomical evidence of a possible direct pathway for transmission of the activating impulse from the sarcolemma to the myofibril Z bands.  相似文献   

20.
Single fibers isolated from walking leg muscles of crayfish have 8- to 10-µ sarcomeres which are divided into A, I, and Z bands. The H zone is poorly defined and no M band is distinguishable. Changes in the width of the I band, accompanied by change in the overlap between thick and thin myofilaments, occur when the length of the sarcomere is changed by stretching or by shortening the fiber. The thick myofilaments (ca. 200 A in diameter) are confined to the A band. The thin myofilaments (ca. 50 A in diameter) are difficult to resolve except in swollen fibers, when they clearly lie between the thick filaments and run to the Z disc. The sarcolemma invaginates at 50 to 200 sites in each sarcomere. The sarcolemmal invaginations (SI) form tubes about 0.2 µ in diameter which run radially into the fiber and have longitudinal side branches. Tubules about 150 A in diameter arise from the SI and from the sarcolemma. The invaginations and tubules are all derived from and are continuous with the plasma membrane, forming the transverse tubular system (TTS), which is analogous with the T system of vertebrate muscle. In the A band region each myofibril is enveloped by a fenestrated membranous covering of sarcoplasmic reticulum (SR). Sacculations of the SR extend over the A-I junctions of the myofibrils, where they make specialized contacts (diads) with the TTS. At the diads the opposing membranes of the TTS and SR are spaced 150 A apart, with a 35-A plate centrally located in the gap. It appears likely that the anion-permselective membrane of the TTS which was described previously is located at the diads, and that this property of the diadic structures therefore may function in excitation-contraction coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号