首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We explored the effect of high‐growth temperatures on a dominant North American boreal tree, black spruce [Picea mariana (Mill.) B.S.P.]. In 2004 and 2005, we grew black spruce at either 22 °C/16 °C day/night temperatures [low temperature (LT)] or 30°/24 °C [high temperature (HT)] and determined how temperature affected growth, leaf morphology, photosynthesis, respiration and thermotolerance. HT spruce were 20% shorter, 58% lighter, and had a 58% lower root : shoot ratio than LT trees. Mortality was negligible in the LT treatment, but up to 14% of HT seedlings died by the end of the growing season. HT seedlings had a higher photosynthetic temperature optimum, but net photosynthesis at growth temperatures was 19–35% lower in HT than LT trees. HT seedlings had both a lower apparent maximum ribulose‐1,5‐bisphosphate carboxylation capacity (Vcmax) and a lower apparent maximum electron transport rate (Jmax) than LT trees, indicating reduced allocation to photosynthetic components. Consistently, HT needles had 26% lower leaf nitrogen content than LT needles. At each measurement temperature, HT seedlings had 20–25% lower respiration rates than LT trees; however, this did not compensate for reduced photosynthetic rates at growth temperature, leading to a greater ratio of dark respiration to net carbon dioxide assimilation rate in HT trees. HT needles had 16% lower concentrations of soluble sugars than LT needles, but similar starch content. Growth at high temperatures increased the thermotolerance of black spruce. HT trees showed less PSII inhibition than LT seedlings and no increase in electrolyte leakage when briefly exposed to 40–57 °C. While trees that develop at high temperatures have enhanced tolerance for brief, extreme heat events, the reduction in root allocation indicates that seedlings will be more susceptible to episodic soil drying and less competitive for belowground resources in future climates of the boreal region.  相似文献   

2.
Different carbohydrates were investigated for somatic embryo development of black spruce and red spruce. They were tested in a basal maturation medium consisting of Litvay's salts at half-strength containing 1 g l-1 glutamine, 1 g l-1 casein hydrolysate, 7.5 M abscisic acid, and 0.9% Difco Bacto-agar. A comparison of different sucrose concentrations showed that 6% was optimal for embryo development. Among the nine carbohydrates tested, sucrose, fructose, glucose, maltose, and cellobiose supported embryo development while arabinose, mannitol, myo-inositol, and sorbitol did not. A comparison of sucrose, glucose, and fructose at three concentrations showed that the general pattern of response for both species followed concentration expressed as a percentage, independent of the molarity of carbohydrate in the medium. Interspecific differences were observed concerning carbohydrate requirements. For red spruce, 6% fructose was found best for embryo development, while no such preference was observed for black spruce. No significant difference was observed in the number of embryos produced with 6% sucrose or 3% sucrose plus an equimolar concentration of either mannitol, sorbitol, or myo-inositol in the maturation medium, suggesting that the effect of the carbohydrate on the maturation was partly osmotic.  相似文献   

3.
Bradley  R.L.  Titus  B.D.  Fyles  J.W. 《Plant and Soil》1997,195(2):209-220
Two species of boreal tree seedlings, paper birch (Betula papyrifera Marsh.) and black spruce (Picea mariana (Mill.) B.S.P.), and the ericaceous shrub Kalmia angustifolia L. were grown in pots with humus from a birch-dominated site and two spruce-Kalmia sites. Root systems interacted with humus form in controlling soil-N cycling as well as energy and nutritional deficiencies of soil microorganisms. In general, Kalmia seedlings affected microbial dynamics and N cycling differently than birch and spruce seedlings did. Birch and spruce seedlings reduced gross N mineralization and immobilization rates, soil mineral-N pools and the amounts of NH –N accreted on buried cation exchange resins in all three soils. Compared to birch and spruce seedlings, the growth of Kalmia resulted in significantly higher gross N mineralization rates, soil mineral-N pools and resin-NH accretion in soil from the fertile birch site. Gross N immobilization rates in all soils were generally higher with Kalmia than with spruce or birch seedlings. All three species of seedlings acquired N from the birch site soil, whereas only Kalmia seedlings acquired N from the two spruce-Kalmia site soils. Relative to control treatments, the amount of N mineralized anaerobically increased in the birch-site soil and decreased in the poor spruce-Kalmia site soil with all three species of seedlings. All seedlings increased the microbial biomass in the birch-site soil. Kalmia humus and Kalmia root systems increased microbial energy-deficiency and decreased microbial nutritional deficiency compared to the other humus and seedlings used. Results are discussed in terms of each species' nutrient acquisition mechanism and its competitive ability during secondary succession.  相似文献   

4.
Interior spruce (Picea glauca engelmannii complex) and black spruce (Picea mariana Mill.) cotyledonary somatic embryos were encapsulated in sodium alginate. Somatic embryo viability was retained, but germination occurred at a reduced frequency compared with the equivalent zygotic embryos. The addition of 0.5% (w/v) activated charcoal to the alginate capsule significantly enhanced root development and germination for somatic embryos but not for zygotic embryos. The possibility of developing an artiflcal endosperm was also investigated, by addition of Litvay (Litvay et al. 1981) nutrients with or without 90 mM sucrose to the alginate-charcoal capsule. This treatment significantly enhanced root development for all embryo categories with the exception of black spruce somatic embryos. Encapsulated and non-encapsulated somatic embryos survived one month cold storage at 4 °C without reduction in germination frequency.NRCC No. 35895  相似文献   

5.
In order to clarify the role of micro-organisms in the carbon cycle of the boreal forest ecosystem, the vertical distribution of soil carbon, soil microbial biomass and respiratory activity was studied in a black spruce forest near Candle Lake in Saskatchewan, Canada. The total amount of carbon contained in moss and soil layers (to the depth of 50cm beneath the mineral soil surface) was 7.2kgm–2, about 47% of which was in the L and FH horizons of the soil. Soil microbial biomass per dry weight of soil was largest in the L horizon, while the biomass per ground area was largest in the FH horizon. Soil respiration rate, measured using a portable infrared gas analyzer, was highest in the FH horizon, exceeding 50% of the total soil respiration. Low but significant CO2 emission was detected even in deeper soil horizon (E horizon). We also examined the respiration rate of cut roots and the effect of root excision on respiration. The contribution of root respiration to total soil respiration, calculated from root biomass and respiration rate of cut roots, was about 54%. The amount of carbon evolved through microbial respiration during the snow-free season (June–October) was estimated as 221gCm–2. Micro-organisms in the L horizon showed high respiratory activity as compared with those in deeper soil horizons.  相似文献   

6.
Moist chilling (cold stratification) is well-known as a simpleand effective means of overcoming physiological seed dormancyand enhancing germination of many temperate tree and shrub species.However, the apparent activation of intracellular repair mechanismsin non-dormant black spruce (Picea mariana) seeds followingmoist chilling, has not previously been reported. The presentcontribution records the beneficial effects of moist chillingafter accelerated ageing (40°C/98% relative humidity) for3–10 d of black spruce seeds. This treatment was maximallyeffective after 7 d of accelerated ageing, increasing germinationfrom 43 to 61%. Ultrastructural examination of embryo cellsindicated that intracellular activation occurred during moistchilling even when seeds had not been subjected to acceleratedageing, and that the increasing levels of damage accumulatingover the 3–7 d period of ageing were substantially reversedduring subsequent moist chilling. The results of cold stratificationof non-dormant seeds are discussed in terms of the value ofthis practice in nursery seedling production from seeds thatare of less than the highest quality.Copyright 2000 Annals ofBotany Company Accelerated ageing, black spruce, cold stratification, embryonic axes, germination, moist chilling, Picea mariana, repair mechanisms, ultrastructure  相似文献   

7.

Key message

A rain exclusion repeated for 3 years resulted in larger summer stem contractions in three of the sites in the third year of the experiment and in larger winter contractions in the northern sites. However, there was no pronounced stress reaction in the stem radius variations of mature black spruce since total stem expansion was not reduced.

Abstract

Future climate warming is expected to produce more severe and frequent periods of drought with consequent water stresses for boreal species. In this paper, we present a high-resolution analysis of stem radius variations in black spruce under rain exclusion. All summer long rain exclusions were applied for three consecutive summers to mature trees on four sites along a latitudinal gradient. The stem radius variations of control and treated trees were monitored year-round at an hourly resolution with automatic point dendrometers. The seasonal patterns of shrinking and swelling were analyzed using a sequential analysis technique and the daily patterns of contraction and expansion were extracted. Overall, the treated trees followed their diurnal cycles of contraction and expansion during the rain exclusions and no significant cumulative difference in stem expansion between control and treated trees was observed over the 3 years. In the third year trees subjected to rain exclusion showed larger stem contractions in summer on three out of four sites and larger winter contractions were observed on the northern sites. This study shows that repeated summer rain exclusion does not necessarily lead to a direct evident stress reaction, showing the resilience of the boreal forest.  相似文献   

8.
The increasing air temperatures central to climate change predictions have the potential to alter forest ecosystem function and structure by exceeding temperatures optimal for carbon gain. Such changes are projected to threaten survival of sensitive species, leading to local extinctions, range migrations, and altered forest composition. This study investigated photosynthetic sensitivity to temperature and the potential for acclimation in relation to the climatic provenance of five species of deciduous trees, Liquidambar styraciflua, Quercus rubra, Quercus falcata, Betula alleghaniensis, and Populus grandidentata. Open‐top chambers supplied three levels of warming (+0, +2, and +4 °C above ambient) over 3 years, tracking natural temperature variability. Optimal temperature for CO2 assimilation was strongly correlated with daytime temperature in all treatments, but assimilation rates at those optima were comparable. Adjustment of thermal optima was confirmed in all species, whether temperatures varied with season or treatment, and regardless of climate in the species' range or provenance of the plant material. Temperature optima from 17° to 34° were observed. Across species, acclimation potentials varied from 0.55 °C to 1.07 °C per degree change in daytime temperature. Responses to the temperature manipulation were not different from the seasonal acclimation observed in mature indigenous trees, suggesting that photosynthetic responses should not be modeled using static temperature functions, but should incorporate an adjustment to account for acclimation. The high degree of homeostasis observed indicates that direct impacts of climatic warming on forest productivity, species survival, and range limits may be less than predicted by existing models.  相似文献   

9.
《Acta Oecologica》1999,20(2):87-92
A study was conducted to determine soil chemistry in an uncut black spruce (Picea mariana) forest with and without the ericaceous understory shrub Kalmia angustifolia, as well as on a cut black spruce forest currently dominated by Kalmia. The organic (humus) and mineral (Ae, upper and lower B horizons) soils associated with Kalmia from uncut and cut forests, and non-Kalmia soils from uncut forest, were analyzed for selected soil properties. In general, mineral soils (B horizon) associated with Kalmia in uncut forest have lower values for organic matter (3.25%), organic nitrogen (0.66 mg·g−1), Fe3+ (95.4 μg·g−1) and Mn2+ (9 μg·g−1), and higher values for pH (4.12) and Ca2+ (27 μg·g−1) compared to non-Kalmia (organic matter, 3.43%; organic-N, 1.15 mg·g−1; Fe3+, 431 μg·g−1; Mn2+, 23.2 μg·g−1; pH, 3.14; Ca2+, 15.6 μg·g−1) and cut black spruce-Kalmia (organic matter, 3.74%; organic-N, 0.94 mg·g−1; Fe3+, 379 μg·g−1; Mn2+, 27 μg·g−1; pH, 2.87; Ca2+, 25.2 μg·g−1) forest. The high C:N ratio in Kalmia mineral soil from upper B (29.73) and lower B (identified as B+) (33.08) in uncut black spruce forest was recorded compared to non-Kalmia soils in B (18.17) and B+ (17.05) horizons in uncut black spruce forest. Phenolics leached out from Kalmia litter were lower in Kalmia associated soils than the non-Kalmia soils from the uncut forest, and Kalmia associated soils from the cut forest area. Results indicate that soils associated with Kalmia were nutrient poor particularly for nitrogen, phosphorus, iron and manganese, and provide some basis for the hypothesis that Kalmia has dominated microsites that were nutrient poor prior to Kalmia colonization.  相似文献   

10.
Extreme climatic events, such as heat waves, cold snaps and drought spells, related to global climate change, have become more frequent and intense in recent years. Acclimation of plant physiological processes to changes in environmental conditions is a key component of plant adaptation to climate change. We assessed the temperature response of leaf photosynthetic parameters in wheat grown under contrasting water regimes and growth temperatures (Tgrowth). Two independent experiments were conducted under controlled conditions. In Experiment 1, two wheat genotypes were subjected to well-watered or drought-stressed treatments; in Experiment 2, the two water regimes combined with high, medium and low Tgrowth were imposed on one genotype. Parameters of a biochemical C3-photosynthesis model were estimated at six leaf temperatures for each factor combination. Photosynthesis acclimated more to drought than to Tgrowth. Drought affected photosynthesis by lowering its optimum temperature (Topt) and the values at Topt of light-saturated net photosynthesis, stomatal conductance, mesophyll conductance, the maximum rate of electron transport (Jmax) and the maximum rate of carboxylation by Rubisco (Vcmax). Topt for Vcmax was up to 40°C under well-watered conditions but 24–34°C under drought. The decrease in photosynthesis under drought varied among Tgrowth but was similar between genotypes. The temperature response of photosynthetic quantum yield under drought was partly attributed to photorespiration but more to alternative electron transport. All these changes in biochemical parameters could not be fully explained by the changed leaf nitrogen content. Further model analysis showed that both diffusional and biochemical parameters of photosynthesis and their thermal sensitivity acclimate little to Tgrowth, but acclimate considerably to drought and the combination of drought and Tgrowth. The commonly used modelling approaches, which typically consider the response of diffusional parameters, but ignore acclimation responses of biochemical parameters to drought and Tgrowth, strongly overestimate leaf photosynthesis under variable temperature and drought.  相似文献   

11.
Somatic embryo cultures of Picea mariana and the species complex P. glauca-engelmannii were each grown in 7.5-l-capacity mechanically-stirred bioreactors containing 61 medium (LP, von Arnold and Eriksson) with 30 mm sucrose. Growth of both species occurred with no observable signs of shear stress due to mechanical agitation. Growth kinetics were analysed using an array of parameters (settled culture volume, packed culture volume, osmolarity, conductivity, pH). These were compared with fresh weight, dry weight, and somatic embryo number in order to determine what parameters were highly correlated with growth and embryo number. Increasing the sucrose concentration from 30 mm to 60 mm resulted in an increase in biomass and total number of somatic embryos. For P. mariana a maximum dry weight of 6.3 gl–1 and 3076 embryos ml–1 occurred in LP medium with 60 mm sucrose after 10–12 days of culture. For P. glauca-engelmannii a maximum dry weight of 4.3 gl–1 and 2278 embryos ml–1 occurred in LP medium with 60 mm sucrose after 6–8 days culture. For all sucrose concentrations, fresh weight, dry weight and embryo number were closely correlated with packed culture volume and conductivity for P. mariana, and settled culture volume, packed culture volume and conductivity for P. glauca-engelmannii.Correspondence to: D. I. Dunstan  相似文献   

12.
Winter hardening in first-year black spruce (Picea mariana) seedlings   总被引:1,自引:0,他引:1  
Winter hardening of first-year black spruce [ Picea mariana (Mill.) B.S.P.] seedlings was studied by assessing a number of morphological and physiological changes under three hardening regimes: 1) early removal (ER), in which seedlings were exposed to natural daylengths and low ambient temperatures outside. 2) extended greenhouse culture (EG), in which seedlings were exposed to natural daylengths and warm temperatures, and 3) short day (SD), in which seedlings were exposed to short daylengths and low ambient temperatures outside. Measurements included needle primordia initiation, embryonic shoot volume, terminal bud mitotic index, embryonic shoot average cell volume, and shoot tip frost hardiness. EG seedlings formed buds containing 4 times as many needle primordia as ER stock. Embryonic shoot volume increased with number of needle primordia initiated, until late in the hardening period, when significant reductions in meristem volumes of SD and EG stock were observed. Frost hardiness increased sooner in seedlings which set bud in response to short days, but SD treatment did not result in significantly greater frost hardiness at the end of the trial. Frost hardiness was correlated with mitotic index of the embryonic shoot. Cell size in the embryonic shoot declined in seedlings of all treatments during hardening, however, EG seedlings had significantly lower cell volumes by the end of the trial in comparison to ER and SD seedlings.  相似文献   

13.
Summary The usefulness of random amplified polymorphic DNA (RAPD) in assessing the genetic stability of somatic embryogenesis-derived populations of black spruce [Picea mariana (Mill.) B.S.P.] was evaluated. Three arbitrary 11-mer primers were successfully used to amplify DNA from both in-vivo and in-vitro material. Twenty-five embryogenic cell lines, additional zygotic embryos and megagametophytes from three controlled crosses involving four selected genotypes of black spruce were used for the segregation analysis of RAPD variants. Ten markers were genetically characterized and used to evaluate the genetic stability of somatic embryos derived from three embryogenic cell lines (one cell line per cross, 30 somatic embryos per cell line). No variation was detected within clones. The utilization of RAPD markers both for the assessment of genetic stability of clonal materials and to certify genetic stability throughout the process of somatic embryogenesis is discussed.  相似文献   

14.
Interactions between growth temperature and measurement temperature were examined for their effects on white spruce [ Picea glauca (Moench) Voss] root respiration. Total dark respiration rates increased with measurement temperature and were unaffected by growth temperature. Partitioning of respiratory electron flow between the cytochrome and alternative pathways was also unaffected by growth temperature. The proportion of respiration mediated by the alternative pathway was constant at measurement temperatures between 4°C and 18°C, but was increased at higher temperatures. Changes in alternative pathway activity were paralleled by changes in capacity, and the alternative pathway was almost fully engaged at all temperatures. Roots grown at low temperature displayed higher carbohydrate levels than roots grown at higher temperatures, but respiration rate was unaffected. Spruce root respiration did not appear to acclimate to growth temperature, and the alternative pathway was not preferentially engaged at low temperature.  相似文献   

15.
U. P. Agarwal  R. H. Atalla 《Planta》1986,169(3):325-332
Native-state organization and distribution of cell-wall components in the secondary wall of woody tissue from P. mariana (Black Spruce) have been investigated using polarized Raman microspectroscopy. Evidence for orientation is detected through Raman intensity variations resulting from rotations of the exciting electric vector with respect to cell-wall geometry. Spectral features associated with cellulose and lignin were studied. The changes in cellulose bands indicate that the pyranose rings of the anhydroglucose repeat units are in planes perpendicular to the cross section, while methine C–H bonds are in planes parallel to the cross section. Changes in bands associated with lignin indicate that the aromatic rings of the phenyl-propane units are most often in the plane of the cell-wall surface. However, regions where lignin orientation departs from this pattern also occur. These results represent direct evidence of molecular organization with respect to cellular morphological features in woody tissue, and indicate that cell-wall components are more highly organized than had been recognized. Studies carried out in order to establish the usefulness and sensitivity of the Raman technique to differences of composition within the cell walls provide evidence of variations in the distribution of cellulose and lignin. Such compositional differences were more prominent between the walls of different cells than within a particular cell wall.  相似文献   

16.
Respiration by plants and microorganisms is primarily responsible for mediating carbon exchanges between the biosphere and atmosphere. Climate warming has the potential to influence the activity of these organisms, regulating exchanges between carbon pools. Physiological ‘down‐regulation’ of warm‐adapted species (acclimation) could ameliorate the predicted respiratory losses of soil carbon under climate change scenarios, but unlike plants and symbiotic microbes, the existence of this phenomenon in heterotrophic soil microbes remains controversial. Previous studies using complex soil microbial communities are unable to distinguish physiological acclimation from other community‐scale adjustments. We explored the temperature‐sensitivity of individual saprotrophic basidiomycete fungi growing in agar, showing definitively that these widespread heterotrophic fungi can acclimate to temperature. In almost all cases, the warm‐acclimated individuals had lower growth and respiration rates at intermediate temperatures than cold‐acclimated isolates. Inclusion of such microbial physiological responses to warming is essential to enhance the robustness of global climate‐ecosystem carbon models.  相似文献   

17.
An aquatic hyphomycete, Dwayaangam sp., was isolated from superficially sterilized black spruce (Picea mariana) needles submerged in aerated water in a small glass chamber (microcosm). The internal transcribed spacer (ITS) sequence of this fungus and of a commonly encountered foliar endophyte isolated from P. mariana showed a high degree of similarity. When sporulation was induced in the microcosm, both the aquatic hyphomycete and the endophyte isolate produced similar aquatic conidia after 30 days, which is longer than previously documented in similar studies. Without the use of molecular tools, the link between the aquatic and endophytic phases of the fungus would have gone unnoticed. This is the first time that a fungal endophyte of conifer needles has been shown to have an aquatic phase. Its presence both as a foliar endophyte and a sporulating aquatic fungus suggests an alternating life cycle between the two environments.  相似文献   

18.
As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn severity, site moisture and time elapsed since burning in determining the invisibility of black spruce forests. We conducted field surveys for presence of non-native plants at 99 burned black spruce forest sites burned in 2004 in three regions of interior Alaska that spanned a gradient of burn severities and site moisture levels, and a chronosequence of sites in a single region that had burned in 1987, 1994, and 1999. We also conducted a greenhouse experiment where we grew invasive plants in vegetation and soil cores taken from a subset of these sites. In both our field survey and the greenhouse experiment, regional differences in soils and vegetation between burn complexes outweighed local burn severity or site moisture in determining the invasibility of burned black spruce sites. In the greenhouse experiments using cores from the 2004 burns, we found that the invasive focal species grew better in cores with soil and vegetation properties characteristic of low severity burns. Invasive plant growth in the greenhouse was greater in cores from the chronosequence burns with higher soil water holding capacity or lower native vascular biomass. We concluded that there are differences in susceptibility to non-native plant invasions between different regions of boreal Alaska based on native species regeneration. Re-establishment of native ground cover vegetation, including rapidly colonizing bryophytes, appear to offer burned areas a level of resistance to invasive plant establishment.  相似文献   

19.
Common gardens were established along a ~900 km latitudinal transect to examine factors limiting geographical distributions of boreal and temperate tree species in eastern North America. Boreal representatives were trembling aspen (Populus tremuloides Michx.) and paper birch (Betula papyrifera Marsh.), while temperate species were eastern cottonwood (Populus deltoides Bartr ex. Marsh var. deltoides) and sweetgum (Liquidambar styraciflua L.). The species were compared with respect to adjustments of leaf photosynthetic metabolism along the transect, with emphasis on temperature sensitivities of the maximum rate of ribulose bisphosphate (RuBP) carboxylation (EV) and regeneration (EJ). During leaf development, the average air temperature (Tgrowth) differed between the coolest and warmest gardens by 12 °C. Evidence of photosynthetic thermal acclimation (metabolic shifts compensating for differences in Tgrowth) was generally lacking in all species. Namely, neither EV nor EJ was positively related to Tgrowth. Correspondingly, the optimum temperature (Topt) of ambient photosynthesis (Asat) did not vary significantly with Tgrowth. Modest variation in Topt was explained by the combination of EV plus the slope and curvature of the parabolic temperature response of mesophyll conductance (gm). All in all, species differed little in photosynthetic responses to climate. Furthermore, the adaptive importance of photosynthetic thermal acclimation was overshadowed by gm's influence on Asat's temperature response.  相似文献   

20.
Summary Dark respiration and photosynthetic carbon dioxide refixation in purple and green Picea abies cones were investigated from budbreak to cone maturity. The rate of dark respiration per unit dry weight and CO2 refixation capacity decreased during cone maturation. At the beginning of the growing season, photosynthetic CO2 refixation could reduce the amount of CO2 released by respiration in green and purple cones by 50% and 40%, respectively. The seasonal performance of the components of the cone carbon balance was calculated using information on the seasonal course of respiration, refixation capacity and the light response curves of cone photosynthesis, as well as the actual light and temperature regime in the field. The daily gain of CO2 refixation reached 28%–34% of respiration in green and 22%–26% in purple cones during the first month of their growth, but decreased later in the season. Over the entire growth period refixation reduced carbon costs of cone production in both cone colour polymorphs by 16%–17%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号