首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The membrane-bound atrial natriuretic peptide receptor (GCA) catalyzes the formation of cGMP from GTP in response to natriuretic peptide hormones. Previous structural studies have focused on the extra-cellular hormone binding domain of this receptor whereas its intra-cellular domain has not yet been amenable to such studies. We report here the baculovirus expression and purification of the GCA intra-cellular domain construct GCAID comprising the complete intra-cellular region which includes the kinase-homology domain, coiled-coil region, and catalytic cyclase domain. The intra-cellular domain was enzymatically characterized in terms of guanylyl cyclase activity and the effects of ATP, manganese, and Triton X-100. Our results indicate that the activity of the intra-cellular domain of the ANP receptor is about 2 fold less active compared to a truncated cyclase domain construct lacking the kinase-like domain that was also expressed and purified. In addition, unlike the full length receptor, the intra-cellular domain could not be activated by Triton X-100/Mn2+ or its activity stimulated by ATP. These data therefore indicate that the major part of the transition from the basal state to the fully, ANP/ATP-dependent, activated state as well its stimulation/enhancement by Triton X-100/Mn2+ requires the full length receptor. These receptor insights could aid in the development of novel therapeutics as the GCA receptor is a key drug target for cardiovascular diseases.  相似文献   

2.
3.
We analyzed cGMP signaling by the human phosphodiesterase 5 (hPDE5) tandem GAF domain based on a functional activation assay. The C-terminal catalytic domain of the cyanobacterial adenylyl cyclase (AC) cyaB1 was used as a reporter enzyme. We demonstrate functional coupling between the hPDE5 GAF ensemble and the AC resulting in a chimera stimulated 10-fold by cGMP. The hPDE5 GAF domain has an inhibitory effect on AC activity, which is released upon cGMP activation. Removal of 109 amino acids from the N terminus resulted in partial disengagement of the GAF domain and AC, i.e. in a 10-fold increase in basal activity, and affected cGMP affinity. The Ser-102 phosphorylation site of hPDE5 increased cGMP affinity, as shown by a 5-fold lower K(D) for cGMP in a S102D mutant, which mimicked complete modification. The function of the NKFDE motif, which is a signature of all GAF domains with known cyclic nucleotide binding capacity, was elucidated by targeted mutations. Data with either single and double mutants in either GAF A or GAF B or a quadruple mutant affecting both subdomains simultaneously indicated that it is impossible to functionally assign cGMP binding and intramolecular signaling to either GAF A or B of hPDE5. Both subdomains are structurally and functionally interdependent and act in concert in regulating cycaB1 AC and, most likely, also hPDE5.  相似文献   

4.
Phosphodiesterase 5 (PDE5) controls intracellular levels of cGMP through its regulation of cGMP hydrolysis. Hydrolytic activity of the C-terminal catalytic domain is increased by cGMP binding to the N-terminal GAF A domain. We present the NMR solution structure of the cGMP-bound PDE5A GAF A domain. The cGMP orientation in the buried binding pocket was defined through 37 intermolecular nuclear Overhauser effects. Comparison with GAF domains from PDE2A and adenylyl cyclase cyaB2 reveals a conserved overall domain fold of a six-stranded beta-sheet and four alpha-helices that form a well defined cGMP binding pocket. However, the nucleotide coordination is distinct with a series of altered binding contacts. The structure suggests that nucleotide binding specificity is provided by Asp-196, which is positioned to form two hydrogen bonds to the guanine ring of cGMP. An alanine mutation of Asp-196 disrupts cGMP binding and increases cAMP affinity in constructs containing only GAF A causing an altered cAMP-bound structural conformation. NMR studies on the tandem GAF domains reveal a flexible GAF A domain in the absence of cGMP, and indicate a large conformational change upon ligand binding. Furthermore, we identify a region of approximately 20 residues directly N-terminal of GAF A as critical for tight dimerization of the tandem GAF domains. The features of the PDE5 regulatory domain revealed here provide an initial structural basis for future investigations of the regulatory mechanism of PDE5 and the design of GAF-specific regulators of PDE5 function.  相似文献   

5.
Adenylate cyclase activity was detected and characterized in cell-free preparations of different strains ofEscherichia coli; it was localized not only in the membrane fraction but also in the cytoplasm, the localization differing from strain to strain. The adenylate cyclase activity is highly dependent on the method used for disintegration of cells. The best results were obtained when using vortexing of the cell suspension with ballotini beads. The pH optimum of adenylate cyclase in cell-free preparations was found to be 9.0 –9.5. The enzyme has an absolute requirement for Mg2+ and is inhibited by sodium fluoride and inorganic diphosphate. Release of adenylate cyclase from the membrane leads to an immediate loss of the activity; it was found that adenylate cyclase is quite labile and hence it could not yet been purified. The method used to determine adenylate cyclase activity and cyclic AMP is described.  相似文献   

6.
Photoreceptor cGMP phosphodiesterase (PDE6) is the central enzyme in the visual transduction cascade. The PDE6 catalytic subunit contains a catalytic domain and regulatory GAF domains. Unlike most GAF domain-containing cyclic nucleotide phosphodiesterases, little is known about direct allosteric communication of PDE6. In this study, we demonstrate for the first time direct, inter-domain allosteric communication between the GAF and catalytic domains in PDE6. The binding affinity of PDE6 for pharmacological inhibitors or for the C-terminal region of the inhibitory gamma subunit (Pgamma), known to directly inhibit PDE6 catalysis, was increased approximately 2-fold by ligands binding to the GAF domain. Binding of the N-terminal half of Pgamma to the GAF domains suffices to induce this allosteric effect. Allosteric communication between GAF and catalytic domains is reciprocal, in that drug binding to the catalytic domain slowed cGMP dissociation from the GAF domain. Although cGMP hydrolysis was not affected by binding of Pgamma1-60, Pgamma lacking its last seven amino acids decreased the Michaelis constant of PDE6 by 2.5-fold. Pgamma1-60 binding to the GAF domain increased vardenafil but not cGMP affinity, indicating that substrate- and inhibitor-binding sites do not totally overlap. In addition, prolonged incubation of PDE6 with vardenafil or sildenafil (but not 3-isobutyl-1-methylxanthine and zaprinast) induced a distinct conformational change in the catalytic domain without affecting the binding properties of the GAF domains. We conclude that although Pgamma-mediated regulation plays the dominant role in visual excitation, the direct, inter-domain allosteric regulation described in this study may play a feedback role in light adaptational processes during phototransduction.  相似文献   

7.
We describe here a novel sensor for cGMP based on the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase 5 (PDE5) using bioluminescence resonance energy transfer (BRET). The wild type GAFa domain, capable of binding cGMP with high affinity, and a mutant (GAFa F163A) unable to bind cGMP were cloned as fusions between GFP and Rluc for BRET (2) assays. BRET (2) ratios of the wild type GAFa fusion protein, but not GAFa F163A, increased in the presence of cGMP but not cAMP. Higher basal BRET (2) ratios were observed in cells expressing the wild type GAFa domain than in cells expressing GAFa F163A. This was correlated with elevated basal intracellular levels of cGMP, indicating that the GAF domain could act as a sink for cGMP. The tandem GAF domains in full length PDE5 could also sequester cGMP when the catalytic activity of PDE5 was inhibited. Therefore, these results describe a cGMP sensor utilizing BRET (2) technology and experimentally demonstrate the reservoir of cGMP that can be present in cells that express cGMP-binding GAF domain-containing proteins. PDE5 is the target for the anti-impotence drug sildenafil citrate; therefore, this GAF-BRET (2) sensor could be used for the identification of novel compounds that inhibit cGMP binding to the GAF domain, thereby regulating PDE5 catalytic activity.  相似文献   

8.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

9.
In Escherichia coli, adenylate cyclase activity is regulated by phosphorylated EnzymeIIAGlc, a component of the phosphotransferase system for glucose transport. In strains deficient in EnzymeIIAGlc, CAMP levels are very low. Adenylate cyclase containing the D414N substitution produces a low level of cAMP and it has been proposed that D414 may be involved in the process leading to activation by EnzymeIIAGlc. In this work, spontaneous secondary mutants producing large amounts of cAMP in strains deficient in EnzymeIIAGlc were obtained. The secondary mutations were all deletions located in the cya gene around the D414N mutation, generating adenylate cyclases truncated at the carboxyl end. Among them, a 48 kDa protein (half the size of wild-type adenylate cyclase) was shown to produce ten times more cAMP than wild-type adenylate cyclase in strains deficient in EnzymeIIAGlc. In addition, this protein was not regulated in strains grown on glucose and diauxic growth was abolished. This allowed the definition of a catalytic domain that is not regulated by the phosphotransferase system and produces levels of cAMP similar to that of regulated wild-type adenylate cyclase in wild-type strains grown in the absence of glucose. Further analysis allowed the characterization of the COOH-terminal regulatory domain, which is proposed to be inhibitory to the activity of the catalytic domain.  相似文献   

10.
Bordetella pertussis, the etiologic agent of whooping cough, produces a calmodulin-sensitive adenylate cyclase which elevates intracellular cAMP in a variety of eucaryotic cells. Exogenous calmodulin added to the partially purified adenylate cyclase has been shown to inhibit invasion of animal cells by this enzyme (Shattuck, R. L., and Storm, D. R. (1985) Biochemistry 24, 6323-6328). In this study, several properties of the calmodulin-sensitive adenylate cyclase are shown to be influenced by Ca2+ in the absence of calmodulin. The presence or absence of Ca2+ during QAE-Sephadex ion exchange chromatography produced two distinct chromatographic patterns of adenylate cyclase activity. Two different forms of the enzyme (Pk1 and Pk2EGTA) were isolated by this procedure. Pk1 adenylate cyclase readily elevated intracellular cAMP levels in mouse neuroblastoma cells (N1E-115) while Pk2EGTA adenylate cyclase had no effect on cAMP levels in these cells. Gel exclusion chromatography of Pk1 adenylate cyclase gave apparent Stokes radii (RS) of 43.5 A (+/- 1.3) in the presence of 2 mM CaCl2 and 33.8 A (+/- 0.94) in the presence of 2 mM EGTA [( ethylenebis (oxyethylenenitrilo)]tetraacetic acid). These Stokes radii are consistent with molecular weights of 104,000 (+/- 6,400) and 61,000 (+/- 3,600), respectively. Pk2EGTA adenylate cyclase had an apparent RS of 33.0 (+/- 1.2) (Mr = 60,600 (+/- 2,800] in the presence of Ca2+ or excess EGTA. At 60 degrees C, Pk1 adenylate cyclase exhibited a Ca2+-dependent heat stability with a half-life for loss of enzyme activity of 10.3 min in 5 mM CaCl2 and a half-life of 2.8 min in the presence of 0.1 microM CaCl2. The stability of Pk2EGTA adenylate cyclase was not affected by changes in free Ca2+. The adenylate cyclase preparations described above were submitted to sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, and enzyme activity was recovered from gel slices by extraction with detergent containing buffers. The catalytic subunit isolated from SDS-polyacrylamide gels was activated 7-fold in the presence of Ca2+ with maximum activity observed at 1 microM free Ca2+. With both preparations, the apparent molecular weight of the catalytic subunit on SDS gels was 51,000 in the presence of 2 mM CaCl2 and 45,000 in the presence of 2 mM EGTA. The catalytic subunit of the enzyme was purified to apparent homogeneity by preparative SDS-polyacrylamide gel electrophoresis and resubmitted to SDS gel electrophoresis in the presence or absence of free Ca2+. The purified catalytic subunit also exhibited a Ca2+-dependent shift in its mobility on SDS gels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Most organisms maintain a transmembrane sodium gradient for cell function. Despite the importance of Na(+) in physiology, no directly Na(+)-responsive signalling molecules are known. The CyaB1 and CyaB2 adenylyl cyclases of the cyanobacterium Anabaena PCC 7120 are inhibited by Na(+). A D360A mutation in the GAF-B domain of CyaB1 ablated cAMP-mediated autoregulation and Na(+) inhibition. Na(+) bound the isolated GAF domains of CyaB2. cAMP blocked Na(+) binding to GAF domains but Na(+) had no effect on cAMP binding. Na(+) altered GAF domain structure indicating a mechanism of inhibition independent of cAMP binding. DeltacyaB1 and DeltacyaB2 mutant strains did not grow below 0.6 mM Na(+) and DeltacyaB1 cells possessed defects in Na(+)/H(+) antiporter function. Replacement of the CyaB1 GAF domains with those of rat phosphodiesterase type 2 revealed that Na(+) inhibition has been conserved since the eukaryotic/bacterial divergence. CyaB1 and CyaB2 are the first identified directly Na(+)-responsive signalling molecules that function in sodium homeostasis and we propose a subset of GAF domains underpin an evolutionarily conserved Na(+) signalling mechanism.  相似文献   

12.
The cGMP-binding cGMP-specific phosphodiesterase (PDE5) contains a catalytic domain that hydrolyzes cGMP and a regulatory (R) domain that contains two GAFs (a and b; GAF is derived from the proteins mammalian cGMP-binding PDEs, Anabaena adenylyl cyclases, and Escherichia coli (FhlA)). The R domain binds cGMP allosterically, provides for dimerization, and is phosphorylated at a site regulated by allosteric cGMP binding. Quaternary structures and cGMP-binding properties of 10 human PDE5A1 constructs containing one or both GAFs were characterized. Results reveal that: 1) high affinity homo-dimerization occurs between GAF a modules (K(D) < 30 nM) and between GAF b modules (K(D) = 1-20 pM), and the sequence between the GAFs (Thr322-Asp403) contributes to dimer stability; 2) 176 amino acids (Val156-Gln331) in GAF a are adequate for cGMP binding; 3) GAF a has higher affinity for cGMP (K(D) < 40 nM) than does the isolated R domain (K(D) = 110 nM) or holoenzyme (K(D) = 200 nM), suggesting that the sequence containing GAF b and its flanking amino acids autoinhibits GAF a cGMP-binding affinity in intact R domain; 4) a mutant (Met1-Glu321) containing only GAF a has high affinity, biphasic cGMP-binding kinetics consistent with structural heterogeneity of GAF a, suggesting that the presence of GAF b is not required for biphasic cGMP-dissociation kinetics observed in holoenzyme or isolated R domain; 5) significant cGMP binding by GAF b was not detected; and 6) the sequence containing GAF b and its flanking amino acids is critical for cGMP stimulation of Ser102 phosphorylation by cyclic nucleotide-dependent protein kinases. Results yield new insights into PDE5 functions, further define boundaries that provide for allosteric cGMP binding, and identify regions that contribute to dimerization.  相似文献   

13.
N-terminal tandem GAF domains are present in 5 out of 11 mammalian phosphodiesterase (PDE) families. The ligand for the GAF domains of PDEs 2, 5, and 6 is cGMP, whereas those for PDEs 10 and 11 remained enigmatic for years. Here we used the cyanobacterial cyaB1 adenylyl cyclase, which has an N-terminal tandem GAF domain closely related to those of the mammalian PDEs, as an assay system to identify the ligands for the human PDEs 10 and 11 GAF domains. We report that a chimera between the PDE10 GAF domain and the cyanobacterial cyclase was 9-fold stimulated by cAMP (EC50= 19.8 microm), whereas cGMP had only low activity. cAMP increased Vmax in a non-cooperative manner and did not affect the Km for ATP of 27 microm. In an analogous chimeric construct with the tandem GAF domain of human PDE11A4, cGMP was identified as an allosteric activator (EC50 = 72.5 microm) that increased Vmax of the cyclase non-cooperatively 4-fold. GAF-B of PDE10 and GAF-A of PDE11A4 contain an invariant NKFDE motif present in all mammalian PDE GAF ensembles. We mutated the aspartates within this motif in both regions and found that intramolecular signaling was considerably reduced or abolished. This was in line with all data concerning GAF domains with an NKFDE motif as far as they have been tested. The data appeared to define those GAF domains as a distinct subclass within the >3100 annotated GAF domains for which we propose a tentative classification scheme.  相似文献   

14.
 We have fused the epidermal growth factor (EGF) to the amino terminus of Pseudomonas exotoxin A (PE) to create a cytotoxic agent, designated EGF-PE, which preferentially kills EGF-receptor-bearing cells. In this study, we analyzed the effect of the Ia domain, the binding domain, of PE on the cytotoxicity of EGF-PE towards EGF-receptor-bearing cells and tried to develop a more potent EGF-receptor-targeting toxin. EGF-PE molecules with sequential deletions at the amino terminus of PE were constructed and expressed in E. coli strain BL21(DE3). The cytotoxicity of these chimeric toxins was then examined. Our results show that the amino-terminal and carboxy-terminal regions of the Ia domain of PE are important for the cytotoxicity of a PE-based targeting toxin. To design a more potent PE-based EGF-receptor-targeting toxin, a chimeric toxin, named EGF-PE(Δ34–220), which had most of the Ia domain deleted but retained amino acid residues 1–33 and 221–252 of this domain, was constructed. EGF-PE(Δ34–220) has EGF-receptor-binding activity but does not show PE-receptor-binding activity and is mildly cytotoxic to EGF-receptor-deficient NR6 cells. As expected, EGF-PE(Δ34–220) is a more potent cytotoxic agent towards EGF-receptor-bearing cells than EGF-PE(Δ1–252), where the entire Ia domain of PE was deleted. In addition, EGF-PE(Δ34–220) was shown to be extremely cytotoxic to EGF-receptor-bearing cancer cells, such as A431, CE81T/VGH, and KB-3-1 cells. We also found that EGF-PE(Δ34–220) was highly expressed in BL21(DE3) and could be easily purified by urea extraction. Thus, EGF-PE(Δ34–220) can be a useful cytotoxic agent towards EGF-receptor-bearing cells. Received : 20 May 1994 / Received last revision : 9 September 1994 / Accepted : 28 September 1994  相似文献   

15.
1. GTP, but not p[NH]ppG (guanosine 5′-[βγ-imido]triphosphate), abolishes the sensitivity of glucagon-stimulated adenylate cyclase to the lipid-phase separations occurring in the outer half of the bilayer in liver plasma membranes from rat. 2. When either GTP or p[NH]ppG alone stimulate adenylate cyclase, the enzyme senses only those lipid-phase separations occurring in the inner half of the bilayer. 3. Trypsin treatment of intact hepatocytes has no effect on the basal, fluoride-, GTP- or p[NH]ppG-stimulated adenylate cyclase activity. However, 125I-labelled-glucagon specific binding decays with a half-life matching that of the decay of glucagon-stimulated adenylate cyclase activity. 4. When GTP or p[NH]ppG are added to assays of glucagon-stimulated activity, the half-life of the trypsin-mediated decay of activity is substantially increased and the decay plots are no longer first-order. 5. Trypsin treatment of purified rat liver plasma membranes abolishes basal and all ligand-stimulated adenylate cyclase activity, and 125I-labelled-glucagon specific binding. 6. Benzyl alcohol activates the GTP- and p[NH]ppG-stimulated activities in an identical fashion, whereas these activities are affected differently when glucagon is present in the assays. 7. We suggest that guanine nucleotides alter the mode of coupling between the receptor and catalytic unit. In the presence of glucagon and GTP, a complex of receptor, catalytic unit and nucleotide regulatory protein occurs as a transient intermediate, releasing a free unstable active catalytic unit. In the presence of p[NH]ppG and glucagon, the transient complex yields a relatively stable complex of the catalytic unit associated with a p[NH]ppG-bound nucleotide-regulatory protein.  相似文献   

16.

Background

We recently characterized a specific inorganic triphosphatase (PPPase) from Nitrosomonas europaea. This enzyme belongs to the CYTH superfamily of proteins. Many bacterial members of this family are annotated as predicted adenylate cyclases, because one of the founding members is CyaB adenylate cyclase from A. hydrophila. The aim of the present study is to determine whether other members of the CYTH protein family also have a PPPase activity, if there are PPPase activities in animal tissues and what enzymes are responsible for these activities.

Methodology/Principal Findings

Recombinant enzymes were expressed and purified as GST- or His-tagged fusion proteins and the enzyme activities were determined by measuring the release of inorganic phosphate. We show that the hitherto uncharacterized E. coli CYTH protein ygiF is a specific PPPase, but it contributes only marginally to the total PPPase activity in this organism, where the main enzyme responsible for hydrolysis of inorganic triphosphate (PPPi) is inorganic pyrophosphatase. We further show that CyaB hydrolyzes PPPi but this activity is low compared to its adenylate cyclase activity. Finally we demonstrate a high PPPase activity in mammalian and quail tissue, particularly in the brain. We show that this activity is mainly due to Prune, an exopolyphosphatase overexpressed in metastatic tumors where it promotes cell motility.

Conclusions and General Significance

We show for the first time that PPPase activities are widespread in bacteria and animals. We identified the enzymes responsible for these activities but we were unable to detect significant amounts of PPPi in E. coli or brain extracts using ion chromatography and capillary electrophoresis. The role of these enzymes may be to hydrolyze PPPi, which could be cytotoxic because of its high affinity for Ca2+, thereby interfering with Ca2+ signaling.  相似文献   

17.
Trypanosoma cruzi, the causative agent of Chagas disease, encodes a number of different cAMP-specific PDE (phosphodiesterase) families. Here we report the identification and characterization of TcrPDEB1 and its comparison with the previously identified TcrPDEB2 (formerly known as TcPDE1). These are two different PDE enzymes of the TcrPDEB family, named in accordance with the recent recommendations of the Nomenclature Committee for Kinetoplast PDEs [Kunz, Beavo, D'Angelo, Flawia, Francis, Johner, Laxman, Oberholzer, Rascon, Shakur et al. (2006) Mol. Biochem. Parasitol. 145, 133-135]. Both enzymes show resistance to inhibition by many mammalian PDE inhibitors, and those that do inhibit do so with appreciable differences in their inhibitor profiles for the two enzymes. Both enzymes contain two GAF (cGMP-specific and -stimulated phosphodiesterases, Anabaena adenylate cyclases and Escherichia coli FhlA) domains and a catalytic domain highly homologous with that of the T. brucei TbPDE2/TbrPDEB2 family. The N-terminus+GAF-A domains of both enzymes showed significant differences in their affinities for cyclic nucleotide binding. Using a calorimetric technique that allows accurate measurements of low-affinity binding sites, the TcrPDEB2 N-terminus+GAF-A domain was found to bind cAMP with an affinity of approximately 500 nM. The TcrPDEB1 N-terminus+GAF-A domain bound cAMP with a slightly lower affinity of approximately 1 muM. The N-terminus+GAF-A domain of TcrPDEB1 did not bind cGMP, whereas the N-terminus+GAF-A domain of TcrPDEB2 bound cGMP with a low affinity of approximately 3 muM. GAF domains homologous with those found in these proteins were also identified in related trypanosomatid parasites. Finally, a fluorescent cAMP analogue, MANT-cAMP [2'-O-(N-methylanthraniloyl)adenosine-3',5'-cyclic monophosphate], was found to be a substrate for the TcPDEB1 catalytic domain, opening the possibility of using this molecule as a substrate in non-radioactive, fluorescence-based PDE assays, including screening for trypanosome PDE inhibitors.  相似文献   

18.
The C-terminal catalytic domains of the 11 mammalian phosphodiesterase families (PDEs) are important drug targets. Five of the 11 PDE families contain less well-characterized N-terminal GAF domains. cGMP is the ligand for the GAF domains in PDEs 2, 5, 6 and 11, and cAMP is the ligand for PDE10. Structurally related tandem GAF domains signalling via cAMP are present in the cyanobacterial adenylate cyclases cyaB1 and cyaB2. Because current high-resolution crystal structures of the tandem GAF domains of PDE2 and cyaB2 do not reveal how cNMP specificity is encoded, we generated chimeras between the tandem GAF domains of cyaB1 and PDE2. Both bind the ligand in the GAF B subdomains. Segmental replacements in the highly divergent beta1-beta3 region of the GAF B subdomain of cyaB1 by the corresponding PDE2 regions switched signalling from cAMP to cGMP. Using 10 chimeric constructs, we demonstrated that, for this switch in purine specificity, only 11% of the sequence of the cyanobacterial GAF B needs to be replaced by PDE2 sequences. We were unable, however, to switch the purine specificity of the PDE2 tandem GAF domain from cGMP to cAMP in reverse constructs, i.e. by replacement of PDE2 segments with those from the cyaB1 GAF tandem domain. The data provide a novel view on the structure-function relationships underlying the purine specificity of cNMP-binding GAF domains and indicate that, as potential drug targets, they must be characterized structurally and biochemically one by one.  相似文献   

19.
The gene cyaB1 from the cyanobacterium Anabaena sp. PCC 7120 codes for a protein consisting of two N-terminal GAF domains (GAF-A and GAF-B), a PAS domain and a class III adenylyl cyclase catalytic domain. The catalytic domain is active as a homodimer, as demonstrated by reconstitution from complementary inactive point mutants. The specific activity of the holoenyzme increased exponentially with time because the product cAMP activated dose dependently and nucleotide specifically (half-maximally at 1 microM), identifying cAMP as a novel GAF domain ligand. Using point mutants of either the GAF-A or GAF-B domain revealed that cAMP activated via the GAF-B domain. We replaced the cyanobacterial GAF domain ensemble in cyaB1 with the tandem GAF-A/GAF-B assemblage from the rat cGMP-stimulated phosphodiesterase type 2, and converted cyaB1 to a cGMP-stimulated adenylyl cyclase. This demonstrated the functional conservation of the GAF domain ensemble since the divergence of bacterial and eukaryotic lineages >2 billion years ago. In cyanobacteria, cyaB1 may act as a cAMP switch to stabilize committed developmental decisions.  相似文献   

20.
Quantum mechanical calculations are presented that predict that one-bond deuterium isotope effects on the 15N chemical shift of backbone amides of proteins, 1Δ15N(D), are sensitive to backbone conformation and hydrogen bonding. A quantitative empirical model for 1Δ15N(D) including the backbone dihedral angles, Φ and Ψ, and the hydrogen bonding geometry is presented for glycine and amino acid residues with aliphatic side chains. The effect of hydrogen bonding is rationalized in part as an electric-field effect on the first derivative of the nuclear shielding with respect to N–H bond length. Another contributing factor is the effect of increased anharmonicity of the N–H stretching vibrational state upon hydrogen bonding, which results in an altered N–H/N–D equilibrium bond length ratio. The N–H stretching anharmonicity contribution falls off with the cosine of the N–H···O bond angle. For residues with uncharged side chains a very good prediction of isotope effects can be made. Thus, for proteins with known secondary structures, 1Δ15N(D) can provide insights into hydrogen bonding geometries. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号