首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Palaeolimnology and contemporary ecology are complementary disciplines but are rarely combined. By reviewing the literature and using a case study, we show how linking the timescales of these approaches affords a powerful means of understanding ecological change in shallow lakes. 2. Recently, palaeolimnology has largely been pre‐occupied with developing transfer functions which use surface sediment‐lake environment datasets to reconstruct a single environmental variable. Such models ignore complex controls over biological structure and can be prone to considerable error in prediction. Furthermore, by reducing species assemblage data to a series of numbers, transfer functions neglect valuable ecological information on species’ seasonality, habitat structure and food web interactions. These elements can be readily extracted from palaeolimnological data with the interpretive assistance of contemporary experiments and surveys. For example, for one shallow lake, we show how it is possible to infer long‐term seasonality change from plant macrofossil and fossil diatom data with the assistance of seasonal datasets on macrophyte and algal dynamics. 3. On the other hand, theories on shallow lake functioning have generally been developed from short‐term (<1–15 years) studies as opposed to palaeo‐data that cover the actual timescales (decades–centuries) of shallow lake response to stressors such as eutrophication and climate change. Palaeolimnological techniques can track long‐term dynamics in lakes whilst smoothing out short‐term variability and thus provide a unique and important means of not only developing ecological theories, but of testing them. 4. By combining contemporary ecology and palaeolimnology, it should be possible to gain a fuller understanding of changing ecological patterns and processes in shallow lakes on multiple timescales.  相似文献   

2.
1. A sediment core (representing 250–300 years) was taken from each of three lakes of conservation interest and contrasting trophic status in the English Lake District: Wastwater, Bassenthwaite Lake and Esthwaite Water. Lithostratigraphic analyses, radiometric dating and analysis of fossil diatoms were carried out.
2. Transfer functions, based on the diatoms, were used to reconstruct total phosphorus (TP) and, thus, eutrophication at the study lakes. In Wastwater, changes in lake pH were also reconstructed.
3. The lakes were also classified according to their present macrophyte flora, the latter being compared with previous records.
4. The fossil diatoms of Wastwater were continuously dominated by taxa typical of oligotrophic, circumneutral waters, indicating that the lake has not been enriched or acidified in the last 250 years. The aquatic macrophyte flora has probably remained unchanged since before the Industrial Revolution.
5. The diatom assemblages of both Bassenthwaite Lake and Esthwaite Water began to change in the mid-1800s. Further change occurred from the 1960s, at the onset of a recent period of eutrophication. These two lakes have experienced continued nutrient enrichment throughout the 1970s, 80s and 90s, largely associated with increasing phosphorus inputs from sewage effluent. There is no evidence of any recovery in response to recent reductions in external nutrient loads.
6. Only in Esthwaite Water has the change in aquatic macrophytes been pronounced.
7. Palaeolimnological reconstruction is useful in determining background conditions and natural variation in lake ecosystems.  相似文献   

3.
1. We compared the baseline phosphorus (P) concentrations inferred by diatom‐P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2–200 μg TP L?1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 μg TP L?1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 μg TP L?1 in only 4). 3. The difference between baseline and present‐day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long‐term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre‐enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in‐lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over‐estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.  相似文献   

4.
5.
Bennion  Helen 《Hydrobiologia》1994,275(1):391-410
Shallow ponds in southeast England are often eutrophic with high phosphorus concentrations. The aim of this study was to develop a diatom-phosphorus transfer function to enable past phosphorus levels in such waters to be inferred from the sediment record. A water chemistry survey of 123 randomly chosen, shallow, artificial ponds in southeast England was carried out. Principal components analysis (PCA) revealed that phosphorus was an important environmental variable. A subset of 31 sites was selected along a total phosphorus (TP) gradient (winter TP range 7–1123 µg 1-1), in order to explore the relationship between the surface-sediment diatom assemblages and the contemporary water chemistry using canonical correspondence analysis (CCA). Annual mean TP was the most significant variable in explaining the variance in the diatom species data.Weighted averaging (WA) regression and calibration techniques were used to generate a transfer function, enabling annual mean TP (range 25–646 µg 1-1) to be inferred from the diatom species TP optima of 102 common taxa in the dataset (r 2 = 0.79; RMSE = 0.161; RMSE(boot) = 0.279; n = 30). The model was applied to fossil diatom assemblages in a sediment core from Marsworth Reservoir, Hertfordshire, a Site of Special Scientific Interest (SSSI), with currently high TP levels of 476 µg 1-1, to reconstruct past epilimnetic annual mean TP concentrations.The study shows that artificial, shallow waters can be suitable for palaeolimnological research and that it is possible to reliably infer lake water TP using the WA technique, across a large range of phosphorus concentrations. This method has the potential to provide limnologists, conservationists and water quality managers with an estimate of pre-enrichment phosphorus concentrations and an indication of the onset and development of eutrophication at a site. This information is essential for lake management strategies and restoration programmes.  相似文献   

6.
Resuspension in a shallow eutrophic lake   总被引:11,自引:7,他引:11  
The frequency and the importance of wind-induced resuspension were studied in the shallow, eutrophic Lake Arresø, Denmark (41 km2, mean depth 3 m). During storm events in autumn 1988 lake water samples were collected every 2–8 hours by an automatic sampler at a mid-lake station. The concentration of suspended solids and Tot-P was found to increase markedly. During storms up to 2 cm of the superficial sediment was resuspended, and the concentration of resuspended solids in the water column rose to 140 mg l–1. The resuspended particles had a relatively high settling velocity and on average, a relatively short residence time in the water column of 7 hours.A model which describes the concentration of resuspended solids as a function of wind velocity and of settling velocity of the resuspended particles is presented. Using additional wind velocity data from a nearby meteorological station, the model has been used to calculate the frequency of resuspension events and concentration of resuspended solids for the period from May to November 1988.These calculations show that resuspension occurred about 50% of the time. Average flux of suspended solids from the sediment to the water was 300 g m–2 d–1 and during 50% of the time lake water concentration of suspended solids was more than 32 mg l–1. A relationship between concentration of suspended solids and Secchi-depth is presented. Because of resuspension, Secchi-depth in Lake Arresø is reduced to 0.5 m.Resuspension also had a marked effect on Tot-P concentration in the lake water, and P input to the lake water being totally dominated by resuspension events.  相似文献   

7.
Models to predict lake annual mean total phosphorus   总被引:1,自引:0,他引:1  
A lake is a product of processes in its watershed, and these relationships should be empirically quantifiable. Yet few studies have made that attempt. This study quantifies and ranks variables of significance to predict annual mean values of total phosphorus (TP) in small glacial lakes. Several new empirical models based on water chemistry variables, on map parameters of the lake and its catchment, and combinations of such variables are presented. Each variable provides only a limited (statistical) explanation of the variation in annual mean values of TP among lakes. The models are markedly improved by accounting for the distribution of the characteristics (e.g., the mires) in the watershed. The most important map parameters were the proportion of the watershed lying close to the lake covered by rocks and open land (as determined with the drainage area zonation method), relief of the drainage area, lake area and mean depth. These empirical models can be used to predict annual mean TP but only for lakes of the same type. The model based on map parameters (r 2=0.56) appears stable. The effects of other factors/variables not accounted for in the model (like redox-induced internal loading and anthropogenic sources) on the variation in annual mean TP may then be estimated quantitatively by residual analysis. A new mixed model (which combines a dynamic mass-balance approach with empirical knowledge) was also developed. The basic objective was to put the empirical results into a dynamic framework, thereby increasing predictive accuracy. Sensitivity tests of the mixed model indicate that it works as intended. However, comparisons against independent data for annual mean TP show that the predictive power of the mixed model is low, likely because crucial model variables, like sedimentation rate, runoff rate, diffusion rate and precipitation factor, cannot be accurately predicted. These model variables vary among lakes, but this mixed model, like most dynamic models, assumed that they are constants.  相似文献   

8.
Summary 1. Fish excretion can be an important source of nutrients in aquatic ecosystems. Nitrogen (N) and phosphorus (P) excretion rates are influenced by many factors, including fish diet, fish growth rate and fish size. However, the relative influence of these and other factors on community‐level excretion rates of fish is unknown. 2. We used bioenergetics modeling to estimate excretion rates of eight fish species in a shallow, Minnesota (U.S.A.) lake over four months in both 2004 and 2005. Excretion rates of each species were summed for community‐level N and P excretion rates, as well as the N : P ratio of excretion. We then used a model‐selection approach to assess ability of independent variables to predict excretion rates, and to identify the most parsimonious model for predicting N : P excretion ratios and P and N excretion rates at the community scale. Predictive models were comprised of the independent variables water temperature and average fish density, fish size, fish growth rate, nutrient content of fish and nutrient content of fish diets at the community scale. 3. Fish density and nutrient content of fish diets (either N or P) were the most parsimonious models for predicting both N and P excretion rates, and explained 96% and 92% of the variance in N and P excretion, respectively. Moreover, fish density and nutrient models had 1400‐fold more support for predicting N and 21‐fold more support for predicting P excretion relative to models based on fish density only. Water temperature, fish size, fish growth rates and nutrient content of fish showed little influence on excretion rates, and none of our independent variables showed a strong relationship with N : P ratios of excretion. 4. Past work has focused on the importance of fish density as a driver of fish excretion rates on a volumetric basis. However, our results indicate that volumetric excretion rates at the community scale will also change substantially in response to changes in relative abundance of fish prey or shifts in relative dominance of planktivores, benthivores, or piscivores. Changes in community‐scale excretion rates will have subsequent influences on algal abundance, water clarity, and other ecosystem characteristics.  相似文献   

9.
Eutrophication is a major problem for shallow lakes in the U.K. lowlands. Over the last few decades issues relating to the management and restoration of these lakes have come to the fore, including the need to develop methods for establishing realistic restoration targets. One group of lakes for which restoration is a key concern are the Attenborough Ponds in the English Midlands, an interconnected series of shallow, nutrient-enriched gravel-pit lakes. In November 1972, the highly polluted River Erewash was diverted into the Attenborough Ponds. To determine the ecological effects of this event and to establish restoration goals for this lake system, two complimentary studies were undertaken here; (i) monitoring of the ecology and sedimentary representation of diatom communities in a disturbed lake connected to the R. Erewash (Tween Pond: high nutrient concentrations, no submerged macrophytes) and a relatively undisturbed lake isolated from the R. Erewash (Clifton Pond: lower nutrient concentrations, abundant submerged macrophytes), and; (ii) examination of the sedimentary diatom record in a short sediment core collected from the chosen disturbed lake (Tween Pond). The species composition, seasonality, relative productivity and sedimentary representation of planktonic and periphytic diatom communities were very different in Tween and Clifton Ponds. In Tween Pond two major phases of planktonic diatom production/sedimentation were observed during March–May and July–September. By contrast, planktonic diatoms were restricted to a single spring peak in Clifton Pond and after May there was a switch to the dominance of periphytic diatoms associated with the development of submerged macrophytes. The 1972 diversion of the River Erewash was clearly reflected in the sedimentary diatom record from Tween Pond, by; (i) the abrupt shift to planktonic diatom dominance, and; (ii) increasing percentages of late summer–autumn associated planktonic diatom species. These changes suggest both significant nutrient enrichment and the switch from submerged macrophyte to phytoplankton dominance. Numerical matching of pre-1972 diatom assemblages with surface sediment assemblages in the gravel-pits using Principal Components Analysis (PCA) and a squared chord distance measure revealed no close analogues. Nevertheless, similarities between; (i) percentages of different diatom habitat and seasonality groups, and; (ii) pre-1972 and contemporary macrophyte survey data suggested that Clifton Pond is probably a good pre-diversion analogue for habitat structure (e.g. macrophyte biomass, composition and architecture) and phenology (e.g. diatom and macrophyte seasonality) in the Ponds. The practical value of combining space-for-time substitution and palaeoecological approaches in restoration ecology studies of shallow lakes is discussed.  相似文献   

10.
1. We investigate long‐term (>200 years) changes to the composition and spatial structure of macrophyte communities in a shallow, eutrophic lake (Barton Broad, eastern England) and consider the implications for lake restoration. 2. Historical macrophyte data were assembled from a variety of sources: existing plant databases, museum herbaria, journal articles, old photographs and eyewitness accounts. Additionally, two types of sediment core sample were analysed for plant macro‐remains and pollen; bulk basal samples from multiple core sites analysed to provide information on ‘pre‐disturbance’ macrophyte communities and two whole cores analysed to determine historical change. 3. Prior to the late 1800s, macrophyte communities were diverse and included a multilayered mosaic of short‐stature submerged taxa and taller submerged and floating‐leaved species. With the progression of eutrophication after around 1900, the former community was displaced by the latter. Diversity was maintained, however, since an encroaching Schoenoplectus–nymphaeid swamp generated extensive patches of low‐energy habitat affording refugia for several macrophytes otherwise unable to withstand the hydraulic forces associated with open water conditions. When this swamp vegetation disappeared in the 1950s, many of the ‘dependent’ aquatic macrophytes also declined leaving behind a sparse, species‐poor community (as today) resilient to both eutrophication and turbulent open waters. 4. The combination of historical and palaeolimnological data sources offers considerable benefits for reconstructing past changes to the aquatic vegetation of lakes and for setting restoration goals. In this respect, our study suggests that successful restoration might often be better judged by reinstatement of the characteristic structure of plant communities than the fine detail of species lists; when nutrients are low and the structure is right, the right species will follow.  相似文献   

11.
1. Total phosphorus (TP) and chlorophyll a (Chl a) chironomid inference models ( Brodersen & Lindegaard, 1999 ; Brooks, Bennion & Birks, 2001 ) were used in an attempt to reconstruct changes in nutrients from three very different lake types. Both training sets were expanded, particularly at the low end of the nutrient gradient, using contemporary chironomid assemblages and environmental parameters from 12 British lakes, although this had little improvement on the model performances. 2. Dissimilarity analyses showed that the historic chironomid assemblages did not have good analogues in the original calibration or extended datasets. However, since the transfer functions are based on weighted averages of the trophic optima for the taxa present and not on community similarities, reasonable downcore inferences were produced. Ordination analyses also showed that the lakes retain their ‘identity’ over time, as the sample dissimilarities within lakes were less than the dissimilarities between lakes. 3. Analysis of the three historic lake profiles showed a range of chironomid community responses to lake development. Chironomids from a shallow lake, Slapton Ley, responded indirectly to nutrient enrichment (TP), probably through altered substrate, macrophyte and fish conditions, rather than directly to primary productivity (Chl a). A stratified lake, Old Mill Reservoir, showed a loss of the profundal chironomid fauna due to increasing primary productivity (Chl a) coupled with increasing hypoxia. A response to nutrients (TP or total nitrogen (TN)) at this site is also indirect, and the TP reconstruction therefore cannot be reliably interpreted. The third lake, March Ghyll Reservoir has little change in historic chironomid communities, suggesting that this well mixed, relatively unproductive lake has changed less than the other lakes. 4. Using chironomids to reconstruct nutrient histories does not follow a simple scheme. The response to changes in nutrients may be direct, but mediated through other ecosystem components. As alternative stable states are possible at a given level of TP it is also likely that alternative chironomid communities exist under similar nutrient conditions. Changes in biological communities can thus occur over thresholds, and it is only biological proxies that can reflect such ecosystem switches within palaeoenvironmental investigations.  相似文献   

12.
13.
1. Recent experimental and field studies on temperate shallow lakes indicate that nitrogen may play a greater role in their functioning than previously thought. Several studies document that abundance and richness of submerged macrophytes, both central in shallow lake ecology, may decrease with increasing nitrogen loading, especially at high phosphorus levels. However, the role of nitrogen in warm lakes with fluctuating water regimes remains to be described in detail. 2. The effect of increasing nitrate and phosphate concentrations on submerged macrophyte growth was examined in a 3‐month mesocosm experiment conducted in summer in a shallow freshwater lake on the north western coast of Turkey with a Mediterranean climate. Twenty four field mesocosms, open to the sediment and atmosphere, were stocked with Myriophyllum spicatum shoots and small cyprinid fish. Three nitrate loadings in combination with two phosphate loadings were applied in a fourfold replicated design. 3. Mean ± SD nutrient concentrations maintained throughout the experiment were 0.55 ± 0.17, 2.2 ± 0.97, 9.2 ± 5.45 mg L?1 total nitrogen and 55 ± 19.2, 73 ± 22.9 μg L?1 total phosphorus. Mean periphyton biomass increased with increasing nutrient concentrations and peaked at the highest nitrogen and phosphorus loadings, while the mean phytoplankton biomass remained relatively low in all treatments. 4. Percent volume inhabited (% PVI) by macrophytes throughout the experiment and total macrophyte biomass at the end of the experiment did not differ among treatments. In addition to stocked M. spicatum, Ceratophyllum demersum and Potamogeton crispus appeared in the majority of the mesocosms. The plants grew continuously up to 50% PVI throughout the experiment and remained resilient to shading provided by periphyton and phytoplankton. 5. The mean summer air temperature in 2007 was 2.2 °C higher than the average of the last 32 years, which resulted in a water level decrease of 0.3 m in the mesocosms over three months. This might have counteracted the shading of submerged macrophytes provided by phytoplankton and periphyton. The results of the experiment are consistent with observations of higher macrophyte resilience to nutrient loading in Mediterranean lakes compared with northern temperate lakes.  相似文献   

14.
15.
氮、磷对热带浅水湖泊惠州西湖蓝藻的控制   总被引:1,自引:0,他引:1  
周敏  刘正文 《生态科学》2012,31(2):115-120
湖泊富营养化常导致蓝藻生物量的增加,水质恶化.于2011年2月至12月对热带浅水湖泊惠州西湖六个湖区的蓝藻群落结构进行研究,以了解其时空变化特征及主要影响因素.结果表明,以沉水植物为优势的元妙观湖区与南南湖蓝藻无明显的优势种;平湖蓝藻优势种为银灰平裂藻(Merismopedia glauca)和湖丝藻(Limnothrix sp.),南丰湖、北丰湖和北南湖的主要优势种均为银灰平裂藻(Merismopedia glauca).平湖、南丰湖、北丰湖和北南湖蓝藻丰度及生物量存在显著的季节变化.相关分析显示惠州西湖夏季蓝藻生物量受氮、磷盐控制.冬季温度的影响,蓝藻生物量与氮、磷的相关性不显著.  相似文献   

16.
Ekholm  Petri  Krogerus  Kirsti 《Hydrobiologia》2003,492(1-3):29-42
Eutrophication of surface waters can be accelerated by anthropogenic P-inputs, provided that P is in a form available to aquatic primary producers. Potentially algal-available P (Paa) under aerobic conditions was determined with a dual-culture assay from 172 samples representing P in point and nonpoint sources and in lacustrine matter. The availability of P – expressed as the proportion of Paa in total P (Tot-P) – ranged from 0 to 100%. In the different P sources, the mean availability ranged from 3.4 to 89% in descending order: wastewater of rural population > biologically treated urban wastewater > dairy house wastewater > biologically and chemically treated urban wastewater > field runoff > forest industrial effluent > fish fodder and feces > river water > field surface soil > forest runoff > lake settling matter > lake bottom sediments. Of the P fractions, dissolved reactive P (o-P) was highly available to algae, whereas particulate P (Ppart) and dissolved unreactive P (unr-Pdiss) contributed to Paa to a lower but varying degree. An approach based on source-dependent availability coefficients, derived from the algal assays, appeared promising in transforming the load of Tot-P into that of Paa. Although the values for Paa obtained by the dual-culture assay probably underestimate the true levels for ultimately available P, they may still give valuable information for eutrophication abatement.  相似文献   

17.
Release of soluble reactive phosphorus (SRP) from dissolved organic phosphorus (DOP), concentrated by reverse osmosis of water samples from Lough Neagh Northern Ireland, was measured in the presence of enzymes and cultures of lake water bacteria in a basal liquid medium adjusted to the pH of lake water (7.6). No hydrolysis of unfractionated DOP was observed in the presence of alkaline phosphatase but a combination of alkaline phosphatase and phosphodiesterase mineralized 14% of DOP in a 30 day incubation period at 15 °C. A similar amount of mineralization was attained by phytase. Phytase induced the same degree of mineralization in a range of DOP fractions varying from MW > 100 000 to c. 500. A mixed culture of lake water bacteria mineralized 12% of unfractionated DOP. Single cultures of lake water bacteria displayed low mineralizing activity (mean of 49 cultures = 5% DOP hydrolysed). Results indicate that DOP from Lough Neagh in the above molecular weight range is predominantly recalcitrant to bacterial mineralization under natural lake conditions.  相似文献   

18.
In 49 unpolluted lakes of north-eastern Poland the biomass of algae in summer is significantly related to the concentration of total phosphorus and to the rate of phosphorus regeneration by zooplankton. Using a model with equations describing these relationships, the biomass of blue-green algae and other phytoplankton groups was predicted for 14 polluted lakes. A good approximation of actual values was obtained only for the biomass of blue-green algae calculated from the estimated rate of P regeneration by zooplankton in these lakes. It is hypothesized that more-or-less edible algae of other classes did not show dependence on the rate of input of regenerated P because their biomass was heavily reduced by grazing of zooplankton.  相似文献   

19.
H. Bennion  M. A. Smith 《Hydrobiologia》2000,436(1-3):145-158
The variability in water chemistry of samples taken on a monthly basis (October 1990–December 1991) from 31 shallow, artificial ponds in southeast England was examined. The survey revealed great within-year variation in the concentrations of nutrients. Total phosphorus (TP) concentrations displayed no overall marked seasonal pattern, although many sites experienced summer peaks with a simultaneous increase in soluble reactive phosphorus (SRP) concentrations, indicating that sediment P release occurred. SRP and nitrate (NO3–N) concentrations displayed a marked seasonal pattern similar to that observed in deep, stratifying lakes, with 55% and 94% of the sites surveyed, respectively, experiencing a decline in concentrations in the spring, maintaining low levels throughout summer and the highest levels occurring in winter. Dissolved silica (SiO2–(Si) also displayed a marked seasonal distribution with a spring decline in concentrations associated with diatom growth, followed by an increase in the summer.The study demonstrated that intra-annual variability in nutrient concentrations is high and tends to be greatest in the most enriched waters. Thus, a high sampling frequency is required to provide representative annual mean data. Furthermore, annual means rather than winter–spring means provide more appropriate estimates of TP and SRP in these waters, owing to the importance of internal cycling of nutrients in summer. The findings are especially relevant to sampling strategy design and the averaging of seasonal water chemistry data for use in predictive models of lake trophic status.  相似文献   

20.
The contribution of sediment release to the phosphorus budget of hypereutrophic Onondaga Lake was determined through laboratory measurements made on intact cores. Rates ranged from 9–21 mg P m–2 d–1 with a mean of 13 mg P m–2 d–1, values similar to those observed in other lakes of comparable trophic state. There was no statistically significant trend in rates in time (July versus September) or in space (location along the major N/S axis of the lake). Rates of sediment phosphorus release measured in the laboratory compared favorably with the observed rate of soluble reactive phosphorus accumulation in the lake's hypolimnion. The sediments are the second largest source of phosphorus for Onondaga Lake, contributing 24% of the overall phosphorus load to the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号