首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C-banding polymorphism was analyzed in 14 accessions of Triticum searsii from Israel, and a generalized idiogram of the species was established. One accession was homozygous for whole arm translocations T1SsS·4SsS and T1SsL·4SsL. C-banding analysis was also used to identify 7 T. aestivum cv Chinese Spring-T. searsii disomic chromosome addition lines, 14 ditelosomic chromosome addition lines, 21 disomic whole chromosome, and 31 ditelosomic chromosome substitution lines. The identity of these lines was further confirmed by meiotic pairing analysis. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of the T. searsii chromosomes. The results show that the T. searsii chromosomes do not compensate well for their wheat homoeologues. The C-banding patterns of T. searsii chromosomes are distinct from those of other S-genome species and from the B-genome chromosomes of wheat, indicating that T. searsii is not a direct B-genome donor species of T. turgidum and T. aestivum.Contribution No. 95-72-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

2.
C-banding patterns and polymorphisms were analyzed in several accessions of the diploidAegilops speciesAe. uniaristata, Ae. mutica, andAe. comosa subsp.comosa and subsp.heldreichii, and standard karyotypes of these species were established. Variation in C-band size and location was observed between different accessions, but did not prevent chromosome identification. One accession ofAe. uniaristata was homozygous for whole-arm translocations involving chromosomes 1N and 5N. The homoeologous relationships of these chromosomes were established by comparison of chromosome morphologies and C-banding patterns to other diploidAegilops species with known chromosome homoeology. In addition, in situ hybridization analysis with a 5S rDNA probe was used to identify homoeologous groups 1 and 5 chromosomes. The present analysis permitted the assignment of allAe. mutica, comosa subsp.comosa, andAe. comosa subsp.heldreichii chromosomes, and three of the sevenAe. uniaristata chromosomes according to their homoeologous groups. The data presented will be useful analyzing genome differentiation in polyploidAegilops species.  相似文献   

3.
Summary C-banding patterns were analysed in 19 different accessions of Aegilops caudata (= Ae. markgrafii, = Triticum dichasians) (2n = 14, genomically CC) from Turkey, Greece and the USSR, and a generalized C-banded karyotype was established. Chromosome specific C-bands are present in all C-genome chromosomes, allowing the identification of each of the seven chromosome pairs. While only minor variations in the C-banding pattern was observed within the accessions, a large amount of polymorphic variation was found between different accessions. C-banding analysis was carried out to identify Ae. caudata chromosomes in the amphiploid Triticum aestivum cv Alcedo — Ae. caudata and in six derived chromosome addition lines. The results show that the amphiploid carries the complete Ae. Caudate chromosome complement and that the addition lines I, II, III, IV, V and VIII carry the Ae. caudata chromosome pairs B, C, D, F, E and G, respectively. One of the two SAT chromosome pairs (A) is missing from the set. C-banding patterns of the added Ae. caudata chromosomes are identical to those present in the ancestor species, indicating that these chromosomes are not structurally rearranged. The results are discussed with respect to the homoeologous relationships of the Ae. caudata chromosomes.  相似文献   

4.
The Giemsa C-banding pattern of the chromosomes of the native self-pollinatedAegilops comosa subsp.comosa var.comosa was studied. Six of the seven chromosomes of the haploid genome were found to be polymorphic for C-banding patterns. Chromosome A had four variants, chromosome E three variants and each of the chromosomes B, D, and F two variants. Chromosomes E and G were polymorphic for arm length and arm ratio.This paper is part of the doctoral dissertation ofA. Georgiou.  相似文献   

5.
Using C-banding method and in situ hybridizatiion with the 45S and 5S rRNA gene probes, six hexaploid species of the genus Avena L. with the ACD genome constitution were studied to reveal evolutionary karyotypic changes. Similarity in the C-banding patterns of chromosomal patterns and in the patterns of distribution of the rRNA gene families suggests a common origin of all hexaploid species. Avena fatua is characterized by the broadest intraspecific variation of the karyotype; this species displays chromosomal variants typical of other hexaploid species of Avena. For instance, a translocation with the involvement of chromosome 5C marking A. occidentalis was discovered in many A. fatua accessions, whereas in other representatives of this species this chromosome is highly similar to the chromosome of A. sterilis. Only A. fatua and A. sativa show slight changes in the morphology and in the C-banding pattern of patterns of chromosome 2C. These results can be explained either by a hybrid origin of A. fatua or by the fact that this species is an intermediate evolutionary form of hexaploid oats. The 7C–17 translocation was identified in all studied accessions of wild and weedy species (A. sterilis, A. fatua, A. ludoviciana, and A. occidentalis) and in most A. sativa cultivars, but it was absent in A. byzantina and in two accessions of A. sativa. The origin and evolution of the Avena hexaploid species are discussed in context of the results.  相似文献   

6.
E N Jellen  R L Phillips  H W Rines 《Génome》1993,36(6):1129-1137
A chromosome C-banding protocol using Wright's stain was employed to compare chromosomes in cultivars and wild accessions of several hexaploid oat taxa (Avena spp.). This technique permits the identification of each of the 21 somatic hexaploid oat chromosomes. Digital images of C-banded cells were captured on computer and used to construct karyotypes of several oat accessions. Polymorphisms for C-bands among oat cultivars and wild accessions are described. These banding polymorphisms can be used to trace introgression of chromosomes from wild sources and to provide physical markers on the genetic map for oat. Although C-banding permits the identification of likely C-genome chromosomes based on comparisons with C-banding patterns in diploid and tetraploid Avena species, the A and D genomes cannot be readily differentiated based on their banding patterns.  相似文献   

7.
The diploid oat species containing the A genome of two types (Al and Ac) were studied by electrophoresis of grain storage proteins (avenins), chromosome C-banding, and in situ hybridization with probes pTa71 and pTa794. The karyotypes of the studied species displayed similar C-banding patterns but differed in size and morphology of several chromosomes, presumably, resulting from structural rearrangements that took place during the divergence of A genomes from a common ancestor. In situ hybridization demonstrated an identical location of the 45S and 5S rRNA gene loci in Avena canariensis and A. longiglumis similar to that in the A. strigosa genome. However, the 5S rDNA locus in A. longiglumis (5S rDNA1) was considerably decreased in the chromosome 3Al long arm. The analysis demonstrated that these oat species were similar in the avenin component composition, although individual accessions differed in the electrophoretic mobilities of certain components. A considerable similarity of A. canariensis and A. longiglumis to the Avena diploid species carrying the As genome variant was demonstrated.  相似文献   

8.
Karyotypes of 185 accessions ofTriticum araraticum Jakubz. (2n = 28 = 4x = AtAtGG) from Iraq, Iran, Turkey, and Transcaucasia were analyzed using C-banding technique. All accessions showed a certain degree of C-banding polymorphism and further karyotypic diversity was generated by structural rearrangements, mainly translocations. Eighty-one accessions had the normal karyotype similar to that ofT. timopheevii (cultivation), i.e., they showed C-banding polymorphism but no chromosomal rearrangements based on the resolving power of the C-banding technique. One-hundred four accessions showed 34 karyotypic variants, 31 had reciprocal translocations with the breakpoints in the centromeric regions of chromosomes. Three showed reciprocal translocations with the breakpoints in intercalary regions of chromosomes. A paracentric inversion for 7At chromosome was observed in some accessions. The rearranged karyotypes differed from the normal by one translocation in 21 variants, by two in 9 variants, by three in 1 variant, and by four in 2 variants of karyotypes. Translocations occurred more frequenty in the chromosomes of G-genome than of At-genome. Individual chromosomes differed in the frequencies of their involvement in translocations. Each geographical region contained a unique spectrum of translocations. Karyotypic diversity was the highest in Iraq followed by Transcaucasia and Turkey. Iran showed little karyotypic variation. Based on karyotypic analysis, Iraq should be considered as a centre of origin and primary centre of diversity ofT. araraticum.  相似文献   

9.
Fourteen species ofAsarum s. str.,Asiasarum andHeterotropa were studied cytotaxonomically. Their karyotypes and C-banding patterns were examined in detail. The results obtained were different in some important respects from previous reports related to the chromosomes of these plants, and were partially disharmonious with the assumptions presented for the relationships among these genera by some previous workers. Furthermore, it was confirmed thatAsarum s. str. (2n=26) (excludingAsarum leptophyllum),Asiasarum (2n=26),Heterotropa (2n=24) andAsarum leptophyllum (2n=24) are distinct from one another in the karyotype and the C-banding pattern of a few pairs of the small chromosomes in each set. The significance of these small chromosomes in considering the relationships among the plants concerned is discussed.  相似文献   

10.
C-banding patterns ofH. brevisubulatum subsp.brevisubulatum (2x) and subsp.turkestanicum (4x) had conspicuous telomeric C-bands in at least one chromosome arm with a minor difference in average band size between subspecies. Other conspicuous bands were few in number as in other taxa of the species complex. The C-banded area of the chromosomes was estimated to be 7 to 8 and 6 per cent, respectively. C-banding- and SAT-chromosome polymorphisms were observed in both subspecies. The latter and previous observations indicate that the number of SAT-chromosomes is a less reliable diagnostic character. Nucleolar organizer region polymorphisms were demonstrated through silver nitrate staining of nucleoli. C-banding patterns corroborated that tetra- and hexaploid cytotypes of subsp.turkestanicum form an autopolyploid series. Reliable identification ofH. brevisubulatum taxa based on cytological criteria should include the simultaneous use of C-banding patterns, and number and morphology of marker chromosomes.  相似文献   

11.
Karyotypes, constitutive heterochromatin and nucleolar numbers of five recognized taxa and two systematically new populations ofGuizotia have been studied using Giemsa or aceto-orcein staining, C-banding and silver nitrate staining. All accessions have 2n = 30 chromosomes, but satellite chromosome number and nucleolar number varied from four to eight. Centromere positions varied from predominantly median to submedian and subterminal in different materials. The satellites and an interstitial region in the short arm of one chromosome pair were C-banded in all materials. Telomeric and centromeric C-bands were also observed. The material could be classified into three groups, indicating possible phylogenetic relationships.  相似文献   

12.
Infraspecific cytogenetical variation was studied in a diverse collection of five non-cultivated and cultivatedCucumis sativus accessions. The individual chromosomes of different accessions could be identified by the C-banding pattern and chromosome measurements. About 40–50% of the genomic area are made up of heterochromatin inC. sativus. The non-cultivated accessions exhibit more heterochromatin and lower chiasma frequencies per pollen mother cell than cultivated accessions. There is infraspecific variation in C-banding pattern, karyomorphology and multinucleolate cells. The use of C-banding in infraspecific classification is discussed.  相似文献   

13.
Arachis batizocoi Krap. & Greg. is a suggested B genome donor to the cultivated peanut,A. hypogaea L. Until recently, only one accession of this species was available in U.S.A. germplasm collections for analyses and species variability had not been documented. The objective of this study was to determine the intraspecific variability ofA. batizocoi to better understand phylogenetic relationships in sect.Arachis. Five accessions of the species were used for morphological and cytological studies and then F1 intraspecific hybrids analyzed. Some variation was observed among accessions—for example, differences in seed size, plant height and branch length. The somatic chromosomes of accessions 9484, 30079, and 30082 were nearly identical, whereas, the karyotypes of accessions 30081 and 30097 have several distinct differences. For example, 30081 had significantly more asymmetrical chromosomes 2 and 6 and more median chromosomes 7 and 10, and 30097 had significantly more asymmetrical chromosomes 3 and 10 and more median chromosomes 1 and 5 than accessions 9484, 30079, and 30082. All F1 hybrids among accessions were highly fertile. Meiotic observations indicated that hybrids among accessions 9484, 30079, or 30082 had mostly bivalents. However, quadrivalents were observed when either 30081 or 30097 was crossed with the above three accessions and 30081 × 30097 had quadrivalents, hexavalents and octavalents. The presence of translocations is the most likely cause of multivalent formation inA. batizocoi hybrids. Cytological evolution via translocations has apparently been an important mechanism for differentiation in the species.Paper No. 12382 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643.  相似文献   

14.
Among a total of 43 accessions ofAlstroemeria aurea, A. ligtu andA. magnifica nuclear DNA amounts (2C-values) showed significant intraspecific variation, 1.09, 1.21 and 1.15 fold, respectively, when determined through flow cytometric measurements of fluorescence of propidium iodide (PI) stained nuclei. After staining with another fluorochrome, 4,6-diamidino-2-phenylindole (DAPI), an intraspecific variation of 1.10, 1.11 and 1.12 fold, respectively, was found. C-band polymorphisms were present among and within the accessions of all three species. In some cases only very small differences in C-banding pattern were observed. In other cases, however, differences were more prominent. Besides C-band polymorphism, there were also instances of chromosome length polymorphism, which concerned the total chromosome complement or single chromosomes. The variation in nuclear DNA amount inA. aurea andA. ligtu was more or less continuous, except for one accession ofA. ligtu subsp.simsii. Artificial selection and possibly introgression of chromosomes from other species may have moulded the karyotypes of some of the accessions ofA. aurea, a species that has been under cultivation for more than 160 years. The variation as observed inA. magnifica subsp.magnifica was discontinuous and could be due to a broad species concept.  相似文献   

15.
燕麦属不同倍性种质资源抗旱性状评价及筛选   总被引:4,自引:0,他引:4  
盆栽控水试验测定了燕麦属13个二倍体、7个四倍体和5个六倍体物种共106份材料的主要抗旱性状表现,用GGEbiplot软件的主成分分析法比较了各性状之间的关系及其对抗旱鉴定的贡献,综合评价燕麦属野生资源在燕麦抗旱育种中的潜能和利用价值。结果表明,干旱处理后植株的死亡率和萎蔫程度与可溶性糖含量的增加幅度呈显著正相关关系(r>0.5, P<0.05),而胁迫后植株的丙二醛(MDA)含量和植株相对电导率与抗旱能力也明显相关(r>0.5, P<0.01)。综合考虑抗旱的相关形态和生理指标,筛选到二倍体Avena atlanticaA. wiestii A. strigosa,四倍体种A. murphyi,以及六倍体栽培燕麦A. sativa和普通野燕麦A. fatua的部分居群具有优良的综合抗旱性。基于A. wiestii,A. strigosaA. murphyi与栽培燕麦较近的亲缘关系,其抗旱性可通过远缘杂交的方式在普通燕麦育种中加以利用。而对于具有明显抗旱优势的野生二倍体材料A. atlantica,则可通过克隆其抗旱基因进而遗传转化的方法将其应用于栽培燕麦的抗旱性改良。同时该研究表明燕麦的抗旱性不具有种属和分布区域的特异性,因此其抗旱性并非简单的由基因或环境决定,在确定抗旱材料时需要对个体进行全面的抗旱性评价和鉴定,以期在利用抗旱材料或通过克隆抗旱基因来改善干旱地区生态环境的实践中能更准确和有效。  相似文献   

16.
The karyotype and the C-banding pattern in two species ofHexastylis andAsarum epigynum were analysed in detail, and the results obtained were compared with those of the other species ofAsarum, Asiasarum andHeterotropa previously reported. The present results were partially different from the previous reports related to the karyotypes of these species. The karyotype observed in two species ofHexastylis (2n=26) was represented by ten pairs of metacentric chromosomes and three pairs of small subtelocentric chromosomes, which is very similar to that ofAsiasarum in eastern Asia. The C-banding patterns ofHexastylis andAsiasarum, however, were clearly different from each other. A striking difference was found in one of the three pairs of small subtelocentric chromosomes. A Formosan speciesAsarum epigynum had the somatic chromosome number 2n=12 and a highly asymmetrical karyotype composed of mainly subtelocentric chromosomes. These karyological features were remarkably different from those of the other groups inAsarum s.l.  相似文献   

17.
Principal component and canonical variate analyses were used to analyse the variation of 34 morphological characters measured in 98 accessions ofTulipa subg.Tulipa, formerly known as sect.Leiostemones. In addition 43 accessions were analysed cytogenetically by means of C-banding methods. Based on the encountered variation and on geographical distribution data 30 species in five sections were recognized, of which the synonymy is stated. Seven new series in two different sections have been designated.  相似文献   

18.
Summary C-banded karyotypes of Agropyron intermedium (2n=6x=42, E1E2X), a partial amphiploid Triticum aestivumAg. intermedium (2n=8x=56, TAF46), and six derived chromosome addition lines, were analyzed. In Ag. intermedium, diagnostic C-bands were present on 14 pairs of chromosomes, designated from A to N, while the remaining seven pairs, designated O to U, either lacked, or had only faint, C-bands and were not always identified unambiguously. All seven Ag. intermedium chromosome pairs of the partial amphiploid TAF46, and the added Ag. intermedium chromosomes present in the six derived addition lines, were identified by their characteristic C-banding patterns. Chromosome morphology and banding patterns were similar to those of the corresponding chromosomes present in the parent Ag. intermedium accession, suggesting that these chromosomes were not structurally rearranged. In-situ hybridization, using a 18s.265s rDNA probe, showed that the Ag. intermedium chromosomes 1Ai-1 and 5Ai-l present in the addition lines L3 and L5 were carrying actively transcribed nucleolus organizer regions. The results are discussed with respect to the genomic relationships of these chromosomes.Contribution no. 91-561-J from the Wheat Genetics Resource Center and Kansas Agricultural Experiment Station, Kansas State University, Manhatten, USA  相似文献   

19.
Summary Starch and polyacrylamide gel electrophoresis of seven isozyme systems was investigated as a means of identifying wild and cultivated species of Avena with different ploidy levels. By examining the characteristic isoenzymatic patterns, it was shown that there was considerable variability within the different species. However, it was nevertheless possible to unequivocally identify the species of wild oats and to distinguish between the different species belonging to the same genomic set, thus providing a definitive reference technique for the identification of Avena species in seed-testing laboratories. The relationships between Avena species were inferred from the electrophoresis data. The divergence of the A. maroccanaA. murphyi complex and its contribution to the AACC genomes are emphasized.  相似文献   

20.
J Z Wei  W F Campbell  R R Wang 《Génome》1995,38(6):1262-1270
Ten accessions of Russian wildrye, Psathyrostachys juncea (Fisch.) Nevski (2n = 2x = 14; NsNs), collected from different geographical regions were analyzed using the C-banding technique. C-banding pattern polymorphisms were observed at all levels, i.e., within homologous chromosome pairs of the same plant, among different individuals within accessions, between different accessions of the same geographic area, and among accessions of different origins. The seven homologous groups varied in the level of C-banding pattern polymorphism; chromosomes A, B, E, and F were more variable than chromosomes C, D, and G. The polymorphisms did not hamper chromosome identification in Ps. juncea, because each chromosome pair of the Ns genome had a different basic C-banding pattern and karyotypic character. A standard C-banded karyotype of Ps. juncea is proposed based on the overall karyotypes and C-bands in the 10 accessions. The C-bands on the Ns-genome chromosomes were designated according to the rules of nomenclature used in wheat. A deletion-translocation heterozygote of Russian wildrye was identified based on the karyotype and C-banding patterns established. The chromosome F pair consisted of a chromosome having the distal segment in the long arm deleted and a translocated chromosome having the distal segment of long arm replaced by the distal segment of the long arm of chromosome E. The chromosome E pair had a normal chromosome E and a translocated chromosome having the short arm and the proximal segment of the long arm of chromosome E and the distal segment of the long arm of chromosome F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号