首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Circulating apolipoprotein J (apoJ) is a 70 kDa glycoprotein comprised of disulfide-linked alpha and beta subunits derived from a single precursor. Post-translational modifications that occur prior to apoJ secretion were assessed, with specific focus on carbohydrate type, the timing of proteolytic cleavage, and the importance of glycosylation on the cleavage and secretion processes. ApoJ was initially resolved as a single chain, intracellular precursor of 58 kDa which contained N-linked oligosaccharide but no O-linked oligosaccharide. The precursor was converted to an intracellular 70 kDa glycoprotein, which became the major intracellular form of apoJ prior to secretion. Maturation of the 58 kDa precursor involved conversion of high-mannose carbohydrate to complex-type carbohydrate containing sialic acid, as well as intracellular cleavage to yield alpha and beta subunits. This cleavage event occurred at a late stage of carbohydrate modification, most likely in the trans-Golgi or a post-Golgi compartment. The maturation and secretion of apoJ occurred rapidly, with a half-time of 30-35 min. Tunicamycin treatment of cells resulted in an unglycosylated doublet comprised of one single chain and one cleaved form of apoJ. The unglycosylated apoJ species were secreted rapidly with a half-time of 20 min. Both cleavage and secretion were independent of glycosylation.  相似文献   

2.
We have reported in the preceding paper that human hepatoma (Hep G2) cells synthesize thyroxine-binding globulin (TBG). In this paper, we evaluated the kinetics of secretion of the protein and the effects produced by the ionophore monensin and the glycosylation inhibitor tunicamycin. Cells were pulse labeled with [35S]methionine and then chased after addition of excess unlabeled methionine. TBG appeared in the medium after 10 min, and 50% of the protein was secreted after 45 min. After 2 h, more than 85% of TBG had been released. The rate of secretion of TBG was much slower than that of albumin, 50% of which was secreted after 20 min. Monensin, 1 microM, caused a marked delay in TBG secretion, with 50% released after 80 min. After 2 h, less than 60% had been released and a plateau was approached. Endoglycosidase H (endo H) treatment of intracellular and secreted TBG showed no alteration in the rate of conversion of TBG oligosaccharide units from high-mannose type (endo H-sensitive) to complex type (endo H-resistant), thus suggesting that monensin impeded the exit of TBG from the Golgi apparatus without affecting the terminal glycosylation of the protein. Tunicamycin, 5 micrograms/ml, completely blocked glycosylation and markedly affected TBG secretion, almost doubling the time required for the secretion of 50% of the protein. The effect was specific for TBG, since it was not observed in the case of albumin. After 2 h, only 56% of the protein had been released. Analysis of intracellular and extracellular immunoprecipitated products revealed the presence of aggregates (Mr greater than 100,000). The lack of carbohydrates, although not preventing TBG secretion, had marked quantitative effects, and increased the susceptibility to aggregation.  相似文献   

3.
We studied the effects of monensin on post-translational modification and intracellular transport of precursors of laminin subunits in parietal endoderm-like F9 cells. At concentrations higher than 0.1 microM, monensin inhibited the processing of high-mannose type precursors for all three subunits and caused their cytoplasmic accumulation. Furthermore, the secretion of mature subunits of laminin was inhibited. Instead, polypeptides with similar molecular weights to those of intracellular precursors were secreted. These polypeptides were immunologically related to laminin subunits and were sensitive to digestion with beta-N-acetylglucosaminidase H (Endo H). This indicated that Golgi complexes of the cells can transport the precursors of laminin subunits even with their terminal glycosylation inactivated by monensin. Tunicamycin induced the accumulation of unglycosylated precursors and strongly reduced their secretion into the medium.  相似文献   

4.
Summary The pathway of interleukin 1 (IL-1) secretion from the cell remains unclear. IL-1β is the major form produced by human monocytes, and is synthesized as a precursor of 35kDa which is processed to the extracellular biologically active 17kDa form. We have examined the intracellular localization of IL-1β in lipopolysaccharide (LPS)-stimulated human peripheral blood monocytes, by immunocytochemistry and immunoprecipitation of subcellular fractions. LPS treatment slightly damaged the cells. Unstimulated cells showed very little immunolabelling. In contrast, there was heavy immunolabelling on LPS stimulated cells. Immunolabelling occured within the cytoplasm, nucleus and mitochondria. There was no immunolabelling on the membranous secretory organelles and the plasma membrane. Blebs of cytoplasm budding from the cell surface were immunolabelled, suggesting an alternative route of secretion of IL-1β from the cell. Immunoprecipitation studies confirmed these results.  相似文献   

5.
ES-1 cells, which showed a higher sensitivity to the cytocidal action of estradiol were isolated from a human breast cancer MCF-7 cell line. Growth of ES-1 cells was inhibited by a dose of 17-beta estradiol that stimulated the growth of the parental MCF-7 cells. Proteins secreted from MCF-7 and ES-1 cells when cultured with 17-beta estradiol were compared by sodium dodecyl sulfate-containing polyacrylamide gel electrophoresis (SDS-PAGE). Addition of estradiol to culture medium enhanced secretion of a protein of molecular mass of 52 kDa in media for both MCF-7 and ES-1 cell lines, but the secretion of a second 67 kDa protein was enhanced about 10-fold only in ES-1 cells. The analysis by SDS-PAGE of culture medium immunoprecipitated with anti-tissue-type plasminogen activator (t-PA) antibody demonstrated that the band of 67 kDa protein specifically secreted from estradiol-treated ES-1 cells contained t-PA. Zymography assays, quantitative immunoreactive assays, and Northern analysis showed about 5-fold specific increase by estradiol of t-PA with molecular mass of 65-70 kDa in ES-1 but not in its parental MCF-7 cells. Cellular level of the plasminogen activity was also specifically enhanced in ES-1 cells by estradiol, but only a slightly in MCF-7 cells. By contrast, another urokinase-type PA (u-PA) with molecular weight of 55 kDa showed very low level activity in both MCF-7 and ES-1 cell lines in the presence of estradiol. Formation of t-PA mRNA was specifically enhanced in ES-1 cells when ES-1 cells were treated for more than 12 h with 10(-8) M 17-beta estradiol. Estradiol did not elongate the lifetime of t-PA mRNA in ES-1 cells. A unique phenotype of ES-1 cells in response to estradiol is discussed in relation to activating expression of the t-PA gene.  相似文献   

6.
Rat ovarian granulosa cells, isolated from immature female rats 48 h after stimulation with 5 IU of pregnant mare's serum gonadotropin, were maintained in culture. The effects of monensin, a monovalent cationic ionophore, on various aspects of proteoglycan metabolism were studied by metabolically labeling cultures with [35S]sulfate, [3H]glucosamine, or [3H]glucose. Monensin inhibited post-translational modification of both heparan sulfate (HS) proteoglycans and dermatan sulfate (DS) proteoglycans, resulting in decreased synthesis of completed proteoglycans [( 35S]sulfate incorporation decreased to 10% of control by 30 microM monensin, with an ED50 approximately 1 microM). Proteoglycans synthesized in the presence of monensin showed undersulfation of both DS and HS glycosaminoglycans and altered N-linked and O-linked oligosaccharides, suggesting that the processing of all sugar moieties is closely associated. Monensin caused a decrease in the endogenous sugar supply to the UDP-N-acetylhexosamine pool as indicated by an increased 3H incorporation into DS chains [( 3H]glucosamine as precursor) in spite of the decrease in glycosaminoglycan synthesis. Monensin reduced and delayed transport of both secretory and membrane-associated proteoglycans from the Golgi complex to the cell surface. It took 2-4 min for newly labeled proteoglycans to reach the main transport process inhibited by monensin. Monensin at 30 microM did not prevent internalization of cell surface 35S-labeled proteoglycans but almost completely inhibited their intracellular degradation to free [35S]sulfate (ED50 approximately 1 microM), resulting in intracellular accumulation of both DS and HS proteoglycans. Pulse-chase experiments demonstrated that one of the intracellular degradation pathways involving proteolysis of both DS and HS proteoglycans and limited endoglycosidic cleavage of HS continued to operate in the presence of monensin. These results suggest that the intracellular degradation of proteoglycans involve both acidic and nonacidic compartments with monensin inhibiting those processes that normally occur in such acidic compartments as endosomes or lysosomes by raising their pH.  相似文献   

7.
Vesicular integral protein of 36 kDa (VIP36) is an intracellular lectin recognizing high-mannose type glycans and is highly expressed in salivary glands, especially the parotid gland, which secretes alpha-amylase in large quantities. Here immunoelectron microscopy demonstrated that VIP36 was primarily localized to secretory vesicles in the glandula parotis of the rat, where alpha-amylase also resided. A secretory vesicle fraction, prepared by Percoll density gradient centrifugation, contained both VIP36 and alpha-amylase. Moreover, alpha-amylase that was localized to these secretory vesicles contained high-mannose type glycans. In addition, VIP36 coprecipitated with alpha-amylase in an endo H treatment-sensitive manner. These results suggest that VIP36 is involved in the secretion of alpha-amylase in the rat parotid gland.  相似文献   

8.
The specific binding sites for tissue-type plasminogen activator (t-PA) were investigated in human umbilical vein endothelial cells. After adding 125I-t-PA (M.W. 70 kDa) to endothelial cells in suspension culture, the ligand was recovered from the cell extract after disuccinimidyl suberate treatment as a high molecular complex with M.W. of 90 kDa on SDS-PAGE. The complex reacted to only anti-t-PA IgG but not to anti-PAI-1 IgG immunoblot analysis, indicating a t-PA specific binding protein. 125I-t-PA ligand blotting of the cell extract revealed that the binding protein had M.W. 20 kDa. The binding of 125I-t-PA to endothelial cells was reduced in the presence of an excess amount of t-PA, plasminogen and 6-aminohexanoic acid, indicating that the binding sites were also recognized by plasminogen, and that t-PA and plasminogen were bound via lysine binding sites in the molecule. These findings suggest that human endothelial cells have specific t-PA binding molecules which may be expressed on the cell surface as t-PA receptors.  相似文献   

9.
The biosynthesis of the heavy chains of two membrane glycoproteins, identified as immunoglobulin M and histocompatibility antigens, has been studied in [35S]methionine pulse-chase experiments by one and two-dimensional gel electrophoresis. Terminal sugar addition results in marked shifts in gel mobility that are mainly due to sialic acid addition, since they are sensitive to neuraminidase. These shifts are prevented when the ionophore monensin is present during the chase incubation. We conclude that both membrane IgM2 and H2 heavy chains normally pass through the Golgi subsite defined by monensin and acquire terminal sialic acid distal to this site. Analysis of surface-iodinated control and monensin-treated cells indicates that, in the presence of monensin, newly synthesized, incompletely glycosylated IgM and H2 are not transported to the cell surface. Thus these membrane proteins appear to follow the same intracellular pathway as secretory proteins.  相似文献   

10.
Rat hepatic lipase is a glycoprotein bearing two N-linked oligosaccharide chains. The importance of glycosylation in the secretion of hepatic lipase was studied using freshly isolated rat hepatocytes. Various inhibitors of oligosaccharide synthesis and processing were used at concentrations that selectively interfere with protein glycosylation. Secretion of hepatic lipase activity was abolished by tunicamycin, castanospermine, and N-methyldeoxynojirimycin. No evidence was found by ELISA or Western blotting for secretion of inactive protein. Inhibition of secretion became apparent after a 30-min lag, corresponding to the time of intracellular transport of pre-existing protein. Simultaneously, intracellular hepatic lipase activity ws depleted. Secretion of hepatic lipase protein and activity was not affected by deoxymannojirimycin and swainsonine. Upon SDS-polyacrylamide gel electrophoresis, hepatic lipase secretion by deoxymannojirimycin- or swainsonine-treated cells showed an apparent Mr of 53 kDa and 55 kDa, respectively, which was distinct from hepatic lipase secreted by untreated cells (Mr = 58 kDa). We conclude that glycosylation and subsequent oligosaccharide processing play a permissive role in the secretion of hepatic lipase. As secretion is prevented by the glucosidase inhibitors castanospermine and N-methyldeoxynojirimycin, but not by inhibitors of subsequent oligosaccharide trimming, the removal of glucose residues from the high-mannose oligosaccharide intermediate in the rough endoplasmic reticulum appears the determining step.  相似文献   

11.
Directed control of cell metabolism by a modification of the physicochemical conditions (presence of Na-butyrate and modification of the temperature) was used to modulate the productivity of human recombinant tissular plasminogen activator (t-PA) expressed under control of SV40 promoter in Chinese Hamster Ovary (CHO) cell lines. We showed that both by adding Na-butyrate or lowering temperature from 37 °C to 32 °C there is an increase in the amount of t-PA excreted, while cell growth is significantly reduced. The treatments also increased the intracellular amount of t-PA. We measured the distribution of cell cycle phases by cytometry and used a modification of the equations of Kromenaker and Srienc (1991, 1994 a, b) to analyse the intracellular t-PA production rate in the different cell cycle phases. Intracellular t-PA was shown to accumulate in G1 phase in all conditions (at 37 °C, at 32 °C and in presence of butyrate). Moreover, we have shown that the distribution of the time cells treated by butyrate are maintained in the G1cell cycle phase is significantly increased. t-PA produced in the different cell culture conditions tested was analysed by zymogram and western blotting: neither butyrate, neither the shift of temperature changed significantly the overall quality of the protein. The N-glycan patterns of recombinant human t-PA was also analysed with carbohydrate-specific lectins. Butyrate caused a transitory increase in N-linked complex high-mannose oligosaccharides without any effect on the sialic acid content of t-PA. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Detailed studies on the effects of the ionophore monensin upon synthesis, maturation, and intracellular transport of pro-opiomelanocortin in cultures of rat pituitary intermediate lobe cells have been carried out. When added at concentrations larger than 5 X 10(-8) M monensin significantly inhibited protein synthesis by cultured intermediate lobe cells. Pro-opiomelanocortin synthesis was also reduced proportionally to the overall rate of protein synthesis. During pulse-chase experiments, monensin when added at a concentration of 10(-5) M at the beginning of the chase incubation completely inhibited the proteolytic processing of pro-opiomelanocortin. Using a subcellular fractionation procedure of intermediate lobe cell extracts on Percoll gradients, we were able to show that after the addition of monensin (10(-5) M), labeled pro-opiomelanocortin molecules synthesized during a 15-min pulse-incubation were recovered intact after a 2-h chase, in the fractions of the density gradient corresponding to the rough endoplasmic reticulum and Golgi elements. No maturation products or precursor molecules entered the granule fractions as observed in nontreated cells. Taken together these results strongly suggest that monensin blocks the intracellular transport of newly synthesized pro-opiomelanocortin molecules at the Golgi level and that inhibition of proteolytic processing is due to the failure of the prohormone to enter the cell compartment (probably the secretion granules) where maturation proteases are located.  相似文献   

13.
Comparative studies of intracellular transport of secretory proteins   总被引:67,自引:35,他引:32       下载免费PDF全文
The physiology of protein intracellular transport and secretion by cell types thought to be free from short-term control has been compared with that of the pancreatic acinar cell, using pulse-chase protocols to follow biosynthetically-labeled secretory products. Data previously obtained (Tartakoff, A.M., and P. Vassalli. J. Exp. Med. 146:1332-1345) has shown that plasma-cell immunoglobulin (Ig) secretion is inhibited by respiratory inhibitors, by partial Na/K equilibration effected by the carboxylic ionophore monensin, and by calcium withdrawal effected by the carboxylic ionophore A 23187 in the presence of ethylene glycol bis (beta-aminoethylether)-N,N,N'',N''-tetraacetic acid (EGTA) and absence of calcium. We report here that both inhibition of respiration and treatment with monensin slow secretion by fibroblasts, and also macrophages and slow intracellular transport (though not discharge per se) by the exocrine pancreatic cells. Attempted calcium withdrawal is inhibitory for fibroblasts but not for macrophages. The elimination of extracellular calcium or addition of 50 mM KCl has no major effect on secretory rate of either fibroblasts or macrophages. Electron microscopic examination of all cell types shows that monensin causes a rapid and impressive dilation of Golgi elements. Combined cell fractionation and autoradiographic studies of the pancreas show that the effect of monensin is exerted at the point of the exit of secretory protein from the Golgi apparatus. Other steps in intracellular transport proceed at normal rates. These observations suggest a common effect of the cytoplasmic Na/K balance at the Golgi level and lead to a model of intracellular transport in which secretory product obligatorily passes through Golgi elements (cisternae?) that are sensitive to monensin. Thus, intracellular transport follows a similar course in both regulated and nonregulated secretory cells up to the level of distal Golgi elements.  相似文献   

14.
We investigated biosynthesis, intracellular transport and release of beta-galactoside alpha-2,6-sialyltransferase in a dexamethasone-inducible rat hepatoma cell line. Confluent cells were induced by 10 microM dexamethasone for 24 h, and metabolically labelled with [35S]methionine/cysteine, followed by immunoprecipitation of sialyltransferase and electrophoretic/fluorographic analysis. The 35S-labelled enzyme was synthesized as a 46-kDa precursor, converted to an intermediate 47-kDa form after 1 h, and gradually to a mature form of 48 kDa within the following 3 h. By means of either tunicamycin inhibition of N-glycosylation or cleavage of N-glycans from isolated sialyltransferase using N-glycosidase F, the sizes of the precursor and the mature form were reduced to 41 kDa and 43 kDa, respectively. After a 4-h chase, treatment with endoglycosidase H revealed two distinct molecular forms of sialyltransferase, bearing either two N-acetyllactosamine-type or one oligomannose-type and one N-acetyllactosamine-type N-linked sugar chain. In addition, sialyltransferase became sensitive to neuraminidase digestion after a 4-h chase. The half-life of intracellular [35S]sialyltransferase was estimated at 3 h. A soluble form was detectable in the supernatant, 2 h after the pulse. Only 12% of the initially labelled sialyltransferase was found in the medium after 12 h, while 73% of the enzyme was degraded intracellularly. To characterize a possible intracellular degradation site, we studied intracellular transport in the presence of either secretion-blocking or acidotropic agents or protease inhibitors. Degradation was significantly delayed by all treatments. Our results show that sialyltransferase follows the secretory pathway as a membrane protein and is retained at a late Golgi stage. We suggest that the bulk of sialyltransferase in rat hepatoma cells is diverted to a post-Golgi degradation pathway. This route contrasts with the post-Golgi trafficking of beta-1,4-galactosyltransferase in HeLa cells, which is constitutively secreted [Strous, G. J. A. M. & Berger, E. G. (1982) J. Biol. Chem. 257, 7623-7628].  相似文献   

15.
Fed-batch operation for the production of t-PA using Chinese Hamster Ovary (CHO) cells was optimized using serial and parallel experimentation. The feed, an isotonic concentrate, was improved to obtain 2- to 2.5-fold increases in integrated viable cell days versus batch. With a low glucose inoculum train, the viability index was further increased up to 4.5-fold. Hydrolysates were substituted for the amino acid portion of the concentrate with no significant change in fed-batch results. The concentrate addition rate was based on a constant 4 pmol/cell.day glucose uptake rate that maintained a relatively constant glucose concentration (approximately 3 mM). Increased viable cell indices did not lead to concomitant increases in t-PA concentrations compared to batch. The fed-batch concentrate and feeding strategy were shown to be effective in hybridoma culture, where a 4-fold increase in viable cell index yielded a 4-fold increase in antibody concentration. The half-life of t-PA decreased from 43 to 15 days with decreasing cell viability (from 92% to 71%), but this was not sufficient to explain the apparent t-PA threshold. Instead, the CHO results were explained by a reduction in t-PA production at higher extracellular t-PA concentrations that limited the fed-batch maximum at 35 mg/L for the cell line investigated. Analysis of both the total and t-PA mRNA levels revealed no response to increasing extracellular t-PA concentrations upon exogenous additions. Instead, intracellular t-PA levels were increased, revealing a possible secretory pathway limitation. A new reactor configuration was developed using an acoustic filter to retain the cells in the reactor while an ultrafiltration module stripped t-PA from the clarified medium before the permeate was returned to the reactor. By adding this harvesting step, the t-PA fed-batch production was increased over 2-fold, up to a yield of 80 mg/L.  相似文献   

16.
Rat embryo fibroblasts cultured in the presence of monensin exhibited an inhibited uptake of horseradish peroxidase. The inhibition was detected after 3 h, after which time the cells became increasingly vacuolated; the concentration of monensin required to inhibit pinocytosis (0.4 microM for half-maximum inhibition at 18 h) was similar to that found by others to inhibit secretion. Both the exchange of 5'-nucleotidase between the membranes of cytoplasmic organelles and the cell surface and the internalization of anti-5'-nucleotidase bound to the cell surface were inhibited by approximately 90% in monensin- treated cells. The effects of monensin were reversible: cells cultured first with monensin, and then in fresh medium, exhibited control levels of horseradish peroxidase uptake, exchange of 5'-nucleotidase, and internalization of anti-5'-nucleotidase bound to the cell surface. After monensin treatment, the median density of both galactosyl transferase and 5'-nucleotidase increased from 1.128 to 1.148, and the median density of both N-acetyl-beta-glucosaminidase and horseradish peroxidase taken up by endocytosis decreased from 1.194 to 1.160. The results indicate that monensin is a reversible inhibitor of pinocytosis and, presumably, therefore, of membrane recycling. They suggest that the inhibition of membrane recycling occurs at a step other than the fusion of pinocytic vesicles with lysosomes and is perhaps a consequence of an effect of the ionophore on the Golgi complex.  相似文献   

17.
18.
The biosynthesis of the EGF receptor was examined in the epidermoid carcinoma cell line A431 and five novel cell lines from human squamous cell carcinomas possessing high numbers of EGF receptors. Newly synthesized EGF receptors were visualized by labeling with [35S]methionine and immunoprecipitation with a monoclonal anti-EGF receptor antibody. In addition, the processing of the EGF receptor and its intracellular transport was analyzed by distinguishing cell surface receptors from intracellular receptors and by treating cells with inhibitors such as tunicamycin, monensin and brefeldin A. These analyses revealed that in all the tumor cell lines the EGF receptor is synthesized as a glycosylated protein of Mr 160,000 which is converted to the receptor of Mr 170,000 through posttranslational glycosylation. The receptors of Mr 160,000 and 170,000 appeared to possess high mannose type oligosaccharide chains because endoglycosidase H treatment reduced their molecular weights by approximately 30,000. A431 was the only tumor cell line studied that secreted the truncated EGF receptor of Mr 110,000. In A431 cells, the truncated EGF receptor was generated from a protein of Mr 60,000 through tunicamycin- and monensin-sensitive glycosylation. A431 cells treated with monensin secreted the truncated receptor as a Mr 95,000 form.  相似文献   

19.
The cell cycle-dependent regulation of the cellular dihydrofolate reductase content (DHFR) and tissue plasminogen activator (t-PA) production and secretion in plasmid-amplified cells was investigated in the DHFR-negative CHO cells transfected with the plasmid pSV-tPA.dhfr. This plasmid, carrying the dhfr and t-PA gene under control of different promotors, was amplified by serial passages in 5 microM methotrexate (MTX) for dhfr gene amplification. The intracellular amount of DHFR was quantitated in viable cells by MTX-FITC labeling and flow cytometric analysis of the FITC fluorescence. In comparison with the original CHO cells, the pSVtPA.dhfr-amplified cells showed a greater than 230-fold increase in MTX-FITC fluorescence. Using dual laser flow cytometry (uv: vital cell cycle with Hoechst 33342; 488 nm: DHFR with MTX-FITC), we show a maximum increase in the intracellular DHFR content during G1 and/or at G1/S transition (100 to 157%), followed by a continuous increase to 200% during S and G2/M. To determine t-PA production CHO cells were sorted from G1-, early/late S-, and G2/M-phase. After 1-, 2-, and 4-h incubation periods, t-PA production was quantitated using a sensitive t-PA ELISA technique. We found that t-PA production and secretion (2-h assay), unlike the expression of DHFR, increased continuously from relatively 100% in G1 to 127% in early S and reached its maximum of 159% in late S, whereas in G2/M-phase it decreased to 118%. Our results show that in pSVtPA.dhfr-coamplified CHO cells gene products DHFR and t-PA both exhibit different cell cycle-correlated accumulation and secretion, respectively, indicating that the brightest MTX-FITC-positive cells (G2/M) do not display the highest t-PA secretion rate.  相似文献   

20.
H K Su  R Eberle    R J Courtney 《Journal of virology》1987,61(5):1735-1737
Herpes simplex virus type 2 glycoprotein gG-2 undergoes a cleavage event during its synthesis and processing. The focus of this report is on the detection and fate of the small-molecular-weight component of gG-2, designated the 34K component. In cultures containing the inhibitor monensin, a 31K component accumulated within infected cells. In contrast, the intracellular accumulation of this 31K precursor was not detected in cultures grown in the absence of the inhibitor. However, the 34K component of gG-2 was found in the extracellular culture fluid. The data suggest that the 31K high-mannose cleavage product of gG-2 is further glycosylated and rapidly secreted from herpes simplex virus type 2-infected cells; however, if glycosylation is perturbed, the 31K high-mannose form remains cell associated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号