首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The assembly and organization of the three major eukaryotic cytoskeleton proteins, actin, microtubules, and intermediate filaments, are highly interdependent. Through evolution, cells have developed specialized multifunctional proteins that mediate the cross-linking of these cytoskeleton filament networks. Here we test the hypothesis that two of these filamentous proteins, F-actin and vimentin filament, can interact directly, i.e. in the absence of auxiliary proteins. Through quantitative rheological studies, we find that a mixture of vimentin/actin filament network features a significantly higher stiffness than that of networks containing only actin filaments or only vimentin filaments. Maximum inter-filament interaction occurs at a vimentin/actin molar ratio of 3 to 1. Mixed networks of actin and tailless vimentin filaments show low mechanical stiffness and much weaker inter-filament interactions. Together with the fact that cells featuring prominent vimentin and actin networks are much stiffer than their counterparts lacking an organized actin or vimentin network, these results suggest that actin and vimentin filaments can interact directly through the tail domain of vimentin and that these inter-filament interactions may contribute to the overall mechanical integrity of cells and mediate cytoskeletal cross-talk.  相似文献   

2.
Immunofluorescence microscopy was used to follow the rearrangement of keratin filaments and vimentin filaments during mitosis in Vero and HeLa cell lines. The experiment results showed that the three dimensional organization and structure of intermediate filaments changed drastically during mitosis. The behavior of intermediate filaments was different in these two epithelial cell lines. In mitotic Vero cells the keratin filaments and vimentin filaments maintained their filamentous structure and formed a cage around the mitotic apparatus. In mitotic HeLa cells the keratin filaments and vimentin filaments reorganized extensively and formed granular cytoplasmic bodies. The ratio of granular cytoplasmic body formation changed in different mitotic phase. The interphase intermediate filament network was reconstructed after mitosis. It is proposed that the state of intermediate filament network in these cells is cell cycle-dependent and intermediate filaments may have some skeletal role in mitosis.  相似文献   

3.
应用制备的血清抗体,采用免疫细胞化学方法观察了两株培养上皮细胞的分裂过程中IF的动态变化过程。实验结果显示,在上皮细胞分裂过程中,IF形态结构及空间分布发生了显著变化,不同细胞之间存在差异,分裂的Vero细胞中角蛋白纤维和波形纤维都维持纤维形态,围绕分裂器形成纤维网罩或纤维束环,随着细胞分裂的进行,IF网的空间组织结构和外观发生动态变化;分裂的HeLa细胞中,角蛋白纤维和波形纤维广泛重组形成颗粒状胞质小体,分裂结束后重建IF网。实验结果表明,IF变化具有细胞周期依赖性和一定的细胞特异性。本文对IF在细胞分裂过程中的功能意义作了讨论。  相似文献   

4.
The organization of actin, tubulin, and vimentin was studied in protruding lamellae of human fibroblasts induced by the aminoglycoside antibiotic neomycin, an inhibitor of the phosphatidylinositol cycle. Neomycin stimulates the simultaneous protrusion of lamellae in all treated cells, and the lamellae remain extended for about 15–20 min, before gradually withdrawing. The pattern and distribution of actin, tubulin, and vimentin during neomycin stimulation were analyzed by fluorescence and electron microscopy. F-actin in the newly formed lamellae is localized in a marginal band at the leading edge. Tubulin is colocalized with F-actin in the marginal band, but the newly formed lamellae are initially devoid of microtubules. Over a period of 10 to 20 min after the addition of neomycin, microtubules grow into the lamellae from the adjacent cytoplasm, while the intensity of tubulin staining of the marginal band decreases. Distribution of vimentin remains unchanged in neomycin-treated cells and vimentin filaments do not enter the new protrusions. Treatment of cells with colchicine and Taxol do not inhibit neomycin-induced protrusion but protrusions are no longer localized at the ends of cell processes and occur all around the cell periphery. We conclude that actin filaments are the major component of the cytoskeleton involved in generating protrusions. Microtubules and, possibly, intermediate filaments control the pattern of protrusions by their interaction with actin filaments.  相似文献   

5.
Monoclonal antibodies were generated against detergent-insoluble cytoskeletal proteins isolated from low-density membrane fractions of rat liver. By immunofluorescence, one of the antibodies stains three distinct structures in cultured rat fibroblast and hepatocyte lines as well as the PtK2 rat-kangaroo kidney epithelial line. These structures are: i) many tangled filaments similar to intermediate filaments (IFs), ii) fewer and variable numbers of straight filaments, and iii) punctate cytoplasmic foci, often most intense around the nucleus. All three of these structures are resistant to extraction by non-ionic detergent. Close examination reveals that the tangled and straight filaments are not stained uniformly, but as a series of bright patches. In cells treated with nocodazole, the antibody reacts strongly with a perinuclear filamentous cage. Very few tangled filaments are detected in these cells, however, the straight filaments and punctate cytoplasmic staining are resistant to nocodazole treatment. Double-label immunofluorescence shows that, even though tangled filament distribution and nocodazole sensitivity are similar to the behavior of vimentin IFs, there is only partial coincidence of staining with either vimentin or cytokeratin IFs. The straight filaments coincide with some actin stress fibers, but the punctate cytoplasmic staining is not related to IFs, actin, or tubulin. Thus, this monoclonal antibody stains a novel group of three seemingly unrelated cytoskeletal structures, including a previously undescribed insoluble nonfilamentous pool. Taken as a whole, two hypotheses are consistent with these data. i) The antigen recognized may be a protein which has a large insoluble cytoplasmic pool and binds both IFs and actin, but only binds to a subset of each class of filaments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Cultured pig kidney epithelial cells were centrifuged at 20,000 gav so that the centrifugation force was oriented parallel to the substrate, fixed and processed for indirect immunofluorescent staining with tubulin and vimentin antibodies. After a 2 hour centrifugation vimentin filaments aggregated in the centripetal parts of the cells (probably, because of their association with floating lipid vesicles). Microtubule-organizing centers were found near the centripetal poles of the nuclei, which migrated in the direction of the centrifugal force. The distribution of the cytoplasmic microtubules did not change during centrifugation. The staining of the cultures one hour after centrifugation revealed vimentin-containing spots with radiating intermediate filaments in most of the cells. These spots were localized near the cell nuclei; double immunofluorescent staining with tubulin and vimentin antibodies showed that their position was identical to that of the microtubule-organizing centers. Similar foci of vimentin filaments were seen in the cells after a 3-4 hour centrifugation. Probably, these structures participate in organizing the intermediate filament cytoskeleton in cells.  相似文献   

7.
中间纤维与细胞核的关系是一个亟待解决解决的重要问题。本文采用火鸡红细胞作为研究材料,首先用细胞分级抽提结合免疫印迹反应显示火鸡红细胞中间纤维蛋白为波形纤维蛋白。然后,我们采用细胞分级抽提结合包埋前免疫胶体金标记的方法显示胞质中间纤维被抗波形纤维蛋白抗体-蛋白A-胶体金特异标记。同时,我们显示结合于核孔复合体上的胞质纤维被抗波形纤维蛋白抗体-蛋白A-胶体金所特异标记。本文结果表明,结合于核孔复合体上  相似文献   

8.
中间纤维与细胞核的关系是一个亟待解决的重要问题。本文采用火鸡红细胞作为研究材料,首先用细胞分级抽提结合免疫印迹反应显示火鸡红细胞中间纤维蛋白为波形纤维蛋白。然后,我们采用细胞分级抽提结合包埋前免疫胶体金标记的方法显示胞质中间纤维被抗波形纤维蛋白抗体-蛋白A-胶体金特异标记。同时,我们显示结合于核孔复合体上的胞质纤维被抗波形纤维蛋白抗体-蛋白A-胶体金所特异标记。本文结果表明,结合于核孔复合体上的胞质纤维是波形纤维,并且提示波形纤维可能通过与Nup 180的结合附着在核孔复合体上,为进一步探讨中间纤维与核孔运输的关系提供了初步实验证据。  相似文献   

9.
Human cells grown in monolayer culture were microinjected with intermediate filament subunit proteins. In fibroblasts with a preexisting vimentin network, injected porcine glial fibrillary acidic protein (GFAP) co-localized with the vimentin network within 24 hours. Phosphorylated GFAP variants were found to become dephosphorylated concomitantly with their incorporation into filamentous structures. After microinjection of either porcine GFAP or murine vimentin into human carcinoma cells lacking cytoplasmic intermediate filaments, we observed that different types of filament networks developed. Whereas vimentin was incorporated into short filaments immediately after injection, GFAP was found to aggregate into rodlike structures. This may indicate a differential filament forming ability of these intermediate filament proteins in vivo.  相似文献   

10.
We have identified the three-dimensional ultrastructure of actin gels that are formed in well-characterized cell extracts and mixtures of purified actin and the 120K actin-binding protein and compared these to the ultrastructure of the cytoplasmic matrix in regions of nonextracted Dictyostelium amoebae that are rich in actin and 120K. This ultrastructural characterization was achieved by using critical-point-dried whole-mount preparations. All three preparations--gelled extracts, purified proteins, and cortical cytoplasm--are composed of filament networks. The basic morphological feature of these networks is the presence of contacts between convergent filaments resulting in "T" or "X" shaped contacts. The finding that actin-containing gels are composed of filament networks, where the primary interaction occurs between convergent filaments, reconciles the known requirement of F actin for gelation with the amorphous appearance of these gels in thin sections. Increasing the molar ratio of 120K dimer to actin monomer increases the number of contacts between filaments per unit volume and decreases the lengths of filaments between contacts. This indicates that 120K stabilizes interactions between filaments and is consistent with biochemical evidence that 120K crosslinks actin filaments. The cortical network in situ resembles more closely networks formed in 120K-rich extracts than networks assembled in mixtures of purified 120K and actin. The heterogeneity of filament diameters and variation of network density are properties shared by extracts and the cytomatrix in situ while networks found in purified 120K-actin gels have filament diameters and densities that are more uniform. These differences are certainly due to the more complex composition of cell extracts and cortical cytoplasm as compared to that of purified 120K-actin gels.  相似文献   

11.
The lamina propria of the large intestine is rich in macrophages, and they might be one of the first lines of the host defense in enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection. Although macrophages were infected with them, they can survive the EHEC O157 infection. We examined the structural rearrangements of the actin cytoskeleton during the microbial infection process. Macrophage actin filaments were rearranged in the following sequence; 1) disappearance of the actin filament bundles in the cytoplasm, 2) accumulation of actin filaments under the cell surface, and 3) construction of actin networks underlying the endosome membrane. Before infection, actin filaments were distributed under the cell surface and in bundles located in the macrophage cytoplasm. Within 2 min, infection caused a rapid and marked loss of the actin filament bundles that had run parallel to the long axis of the cell. Concomitant with the loss, actin filaments became more markedly distributed under the cell surface. In the formation of the endosome, new networks of actin filaments were constructed below the phagosome membrane. The networks contained a large amount of actin as well as a fodrin-like immunoreactivity. The thickness of the networks reached about 400 nm under the phagosome membrane. The actin networks disappeared again after the bacterial digestion. The results of this study showed that actin filaments undergo three major rearrangements of the actin filaments during the infection in macrophages, and suggested that the third rearrangement is mediated by actin-binding proteins, such as a fodrin-like molecules. These morphological changes in macrophages were not clear after infection with other strains of Escherichia coli.  相似文献   

12.
The abundance and cytoplasmic organization of keratin filaments enables them to contribute to the maintenance of structural integrity in epithelial tissues. Co-polymers of the type II keratin 8 and type I keratin 18 form the major intermediate filament network in simple epithelia. We investigated the mechanical properties of K8-K18 filament suspensions using rheological assays in conjunction with light and electron microscopy. Suspensions of K8-K18 filaments behave like a viscoelastic solid under standard assembly conditions. Bulk elasticity is weakly dependent on deformation frequency but is very sensitive to the concentration (G' approximately C1.5) and size of individual keratin polymers, in agreement with recent models of semiflexible-polymer physics. K8-K18 filaments can self-organize to form a bundled network that exhibits gel-like mechanical properties. In all cases the mechanical properties of the suspensions correlate with the structural features of individual polymers, as seen under light and electron microscopy. Importantly, these bulk viscoelastic properties of K8-K18 filaments are revealed only when interfacial elastic effects are minimized by the application of phospholipids at the air-liquid interface. Suspensions of K5-K14 and vimentin filaments also exhibit interfacial elasticity, which distorts the interpretation of the viscoelastic moduli as determined by standard rheometry. The potential for modulation of mechanical properties through self-organization may be a general property of keratin polymers and contribute to their organization and function in vivo.  相似文献   

13.
Giant axonal neuropathy (GAN) is a severe autosomal recessive disease affecting both the peripheral and central nervous systems. It is characterized by segmental axonal ballooning due to large neurofilamentous masses and abnormal aggregation of filaments in other cell types including glial cells. Coomassie blue staining of the detergent-resistant cytoskeleton of cultured skin fibroblasts from three patients with GAN revealed the presence of large cytoplasmic filamentous aggregates in the great majority of cells. The aggregates were birefringent when viewed under polarization microscopy and electron microscopy showed that they were composed of aggregates of 8 to 10 nm intermediate filaments. The aggregates stained with antisera specific for vimentin but did not stain with antibodies to actin, tubulin, or the high molecular weight (HMW) microtubule associated protein. Examination of the fibroblasts containing the vimentin aggregates with antibodies to tubulin and the HMW protein showed that they had a normal distribution of microtubules and that the microtubules present were normally associated with the HMW protein. The results suggest that giant axonal neuropathy is a generalized inborn error of organization of intermediate filaments and that a defect in microtubules or their association with HMW protein is not responsible for the observed aggregation of intermediate filaments in this disease. Further study of GAN may be useful in understanding the function of intermediate filaments.  相似文献   

14.
The organization and regulation of the macrophage actin skeleton   总被引:11,自引:0,他引:11  
To move, leukocytes extend portions of their cortical cytoplasm as pseudopods. These pseudopods are filled with a three-dimensional actin filament skeleton, the reversible assembly of which in response to receptor stimulation is thought to play a major role in providing the mechanical force for these protrusive movements. The organization of this actin skeleton occurs at different levels within the cell, and a number of macrophage proteins have been isolated and shown to affect the architecture, assembly, stability, and length of actin filaments in vitro. The architecture of cytoplasmic actin is regulated by proteins that cross-link filaments in higher-order structures. Actin-binding protein plays a major role in defining network structure by cross-linking actin filaments into orthogonal networks. Gelsolin may have a central role in regulating network structure. It binds to the sides of actin filaments and severs them, and binds the "barbed" filament end, thereby blocking monomer addition at this end. Gelsolin is activated to bind actin filaments by microM calcium. Dissociation of gelsolin bound on filament ends occurs in the presence of the polyphosphoinositides, PIP and PIP2. Calcium and PIP2 have been shown to be intracellular messengers of cell stimulation.  相似文献   

15.
Changes in cell cytoskeleton are known to play an important role in differentiation and embryogenesis and also in carcinogenesis. Previous studies indicated that neonatal hepatocytes undergo an epithelial–mesenchymal transition when cultured in a serum-free medium for several days. Here we show by Western blotting of neonatal rat liver cells cultured for 3 days that vimentin and cytokeratin were expressed by these cells. Epidermal growth factor treatment induced high coexpression of vimentin and cytokeratin filaments in hepatocytes from neonatal livers, as detected by double immunofluorescence microscopy. Confocal scanning laser microscopy was used to determine the spatial and cell distribution of cytokeratin and vimentin intermediate filament networks. Vimentin-expressing hepatocytes were mainly located on the periphery of epithelial clusters and presented a migratory morphology, suggesting that vimentin expression was related to the loss of cell–cell contact. Short vimentin filaments were mainly located at the cytoplasmic sites behind the extending lamella. Horizontal and vertical dual imaging of double immunofluorescence with anti-vimentin and anti-cytokeratin antibodies indicated that both filaments colocalize strongly. Three-dimensional reconstruction of serial optical sections revealed that newly synthesized vimentin distributed following the preexisting cytokeratin network and, when present, both filament scaffolds codistributed inside cultured hepatocytes. Immunoelectron microscopy performed in whole-mount-extracted cultured cells revealed that both filaments are closely interrelated but independent. However, a high degree of immunogold colocalization was found in the knots of the filament network. Further experiments with colce- mide and cytochalasin treatment indicated that vimentin filament distribution, but not cytokeratin, was dependent on an intact microtubule network. These results are consistent with a mechanism of vimentin assembly, whereby growth of vimentin intermediate filaments is dependent on microtubules in topographically restricted cytoplasmic sites, in close relation to the cytokeratin cytoskeleton and to changes in cell–cell contact and cell shape.  相似文献   

16.
The behaviour of keratin filaments during cell division was examined in a wide range of epithelial lines from several species. Almost half of them show keratin disruption as described previously: by immunofluorescence, filaments are replaced during mitosis by a 'speckled' pattern of discrete cytoplasmic dots. In the electron microscope these ' speckles ' are seen as granules around the cell periphery, just below the actin cortical mesh, with no detectable 10 nm filament structure inside them and no keratin filament bundles in the rest of the cytoplasm. A time course of the filament reorganization was constructed from double immunofluorescence data; filaments are disrupted in prophase, and the filament network is intact again by cytokinesis. The phenomenon is restricted to cells rich in keratin filaments, such as keratinocytes; it is unrelated to the co-existence of vimentin in many of these cells, and vimentin is generally maintained as filaments while the keratin is restructured. Some resistance to the effect may be conferred by an extended cycle time. Filament reorganization takes place within minutes, so that a reversible mechanism seems more likely than one involving de novo protein synthesis, at this metabolically quiet stage of the cell cycle.  相似文献   

17.
The distribution of plectin in the cytoplasm of Rat1 and glioma C6 cells was examined using a combination of double and triple immunofluorescence microscopy and interference reflection microscopy. In cells examined shortly after subcultivation (less than 48 h), filamentous networks of plectin structures, resembling and partially colocalizing with vimentin filaments, were observed as reported in previous studies. In cells kept attached to the substrate without growth for periods of 72 h to 8 days (stationary cultures), thick fibrillary plectin structures were observed. These structures were located at the end of actin filament bundles and showed co-distribution with adhesion plaques (focal contacts), vinculin, and vimentin. Only relatively large adhesion plaques (dash-like contacts) were decorated by antibodies to plectin, smaller dot-like contacts at the cell edges remained undecorated. Moreover, in stationary Rat1 cells plectin structures were found to be predominantly colocalized with actin stress fibers. However, after treatment of such cells with colcemid, plectin's distribution changed dramatically. The protein was no longer associated with actin structures, but was distributed diffusely throughout the cytoplasm. After a similar treatment with cytochalasin B, plectin's association with stress fibers again was completely abolished, although stress fibers were still present. The association of plectin with focal contact-associated intermediate filaments was demonstrated also by immunogold electron microscopy of quick-frozen, deep-etched replicas of rat embryo fibroblasts. These data confirm previous reports suggesting a relationship between intermediate filaments on the one hand, and actin stress fibers and their associated plasma membrane junctional complexes, on the other. Furthermore, the data establish plectin as a novel component of focal contact complexes and suggest that plectin plays a role as mediator between intermediate filaments and actin filaments.  相似文献   

18.
Polymerizing networks of actin filaments are capable of exerting significant mechanical forces, used by eukaryotic cells and their prokaryotic pathogens to change shape or to move. Here we show that small beads coated uniformly with a protein that catalyses actin polymerization are initially surrounded by symmetrical clouds of actin filaments. This symmetry is broken spontaneously, after which the beads undergo directional motion. We have developed a stochastic theory, in which each actin filament is modelled as an elastic brownian ratchet, that quantitatively accounts for the observed emergent symmetry-breaking behaviour. Symmetry-breaking can only occur for polymers that have a significant subunit off-rate, such as the biopolymers actin and tubulin.  相似文献   

19.
20.
By indirect immunofluorescence microscopy and electron microscopy, we studied the behavior of intermediate filaments during mitosis in three human epithelial cell lines, derived from normal epidermis (PcaSE-1, from a cancer patient), stratified epithelium (CNE, from nasopharyngeal carcinoma) and simple epithelium (SPC-A-1 from lung adenocarcinoma) respectively. CNE cells and SPC-A-1 cells express two different intermediate filament systems; keratin filaments and vimentin filaments, but PcaSE-1 cells only express keratin filaments. The keratin filament system in PcaSE-1 cells remained intact and encircled the developing mitotic spindle as the cells entered mitosis. In contrast, in CNE cells and SPC-A-1 cells, keratin filaments appeared to disassemble into amorphous cytoplasmic bodies during mitosis. However, their vimentin filaments remained morphologically intact throughout mitosis. We propose; (1) The disassembly of keratin filaments in mitotic epithelial cells is more or less associated with the degree of their cell malignancy rather than with the abundance of keratin filaments in interphase. (2) Intermediate filaments may be involved in the positioning and/or centering of the spindle during mitosis. (3) The possible function of vimentin filament system in CNE cells is positioning and orientation of chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号