首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholest-8(14)-enol is the major radioactive component of the 4-di-demethyl sterol fraction biosynthesized from 4,4-dimethyl[2-(3)H(2)]cholest-8(14)-enol by rat liver microsomal fractions, and therefore the first steps in the biosynthesis of cholesterol from the latter compound probably involve removal of the 4-methyl groups. 4,4-Dimethylcholesta-8,14-dienol therefore is not an intermediate in this process, although its presence in the incubation medium at a concentration of 0.146mm almost completely inhibits the demethylation of 4,4-dimethyl[2-(3)H(2)]cholest-8(14)-enol. Nor is cholesta-8,14-dienol an intermediate in the conversion of cholest-8(14)-enol into cholest-7-enol and cholesterol. With 4,4-dimethyl[2-(3)H(2)]cholesta-8,14-dienol as the cholesterol precursor, 4,4-dimethylcholest-8(9)-enol becomes heavily labelled and there is very little radioactivity associated with cholesta-8,14-dienol.In this case, the most heavily labelled 4-di-demethyl sterols are cholest-7-enol and cholesterol with the former predominating. There is little or no radio-activity associated with cholest-8(14)-enol. A similar labelling pattern amongst the 4-di-demethyl sterols was observed with dihydro[(14)C]lanosterol as the precursor. The first step therefore in the synthesis of cholesterol from the 4,4-dimethyl[2-(3)H(2)]dienol is reduction of the Delta(14(15)) bond and not removal of the 4alpha-methyl group. Depending on the nature of the precursor, addition of the soluble fraction of the cell to the microsomal fraction resulted in a two- to four-fold stimulation of 4-di-demethyl sterol biosynthesis from the 4,4-dimethyl sterols studied. Under these conditions, 4,4-dimethylcholesta-8,14-dienol is the most efficient precursor of cholesterol and cholest-7-enol, and dihydrolanosterol is better than 4,4-dimethylcholest-8(14)-enol.  相似文献   

2.
1. [2(-14)C]Mevalonic acid injected into the echinoderm Asterias rubens (Class Asteroidea) was effectively incorporated into the non-saponifiable lipid. 2. The most extensively labelled compounds were squalene and the 4,4-dimethyl sterols with much lower incorporations into the 4alpha-monomethyl and 4-demethyl sterol fractions. 3. Labelled compounds identified were squalene, lanosterol, 4,4-dimethyl-5alpha-cholesta-8,24-dien-3beta-ol and 4alpha-methyl-5alpha-cholest-7-en-3beta-ol; these are all intermediates in sterol biosynthesis. 4. The major sterol in A. rubens, 5alpha-cholest-7-en-3beta-ol, was also labelled showing that this echinoderm is capable of sterol biosynthesis de novo. 5. No evidence was obtained for the incorporation of [2(-14)C]mevalonic acid into the C28 and C29 components of the 4-demethyl sterols or 9beta,19-cyclopropane sterols found in A. rubens and it is assumed that these sterols are of dietary origin. 6. Another starfish Henricia sanguinolenta also incorporated [2(-14)C]mevalonic acid into squalene and lanosterol. 7. Various isolated tissues of A. rubens were all capable of incorporation of [2(-14)C]mevalonic acid into the nonsaponifiable lipid. With the body-wall and stomach tissues radioactivity accumulated in squalene and the 4,4-dimethyl sterols, but with the gonads and pyloric caecae there was a more efficient incorporation of radioactivity into the 4-demethyl sterols, principally 5alpha-cholest-7-en-3beta-ol.  相似文献   

3.
Lanosterol 14 alpha-demethylase (P45014DM) is the cytochrome P450 enzyme complex responsible for an early step in cholesterol biosynthesis, namely the 14 alpha-demethylation of lanosterol. We have synthesized a novel series of steroidal substrate analogues, designed to be specific and potent inhibitors of P45014DM. We describe here the effects of these compounds on sterol biosynthesis downstream from lanosterol, focusing ultimately on their efficacy as inhibitors of cholesterol biosynthesis. Results using a radio-high performance liquid chromatography (HPLC) assay show that in rat liver microsomal preparations, with [24,25-3H]dihydrolanosterol as substrate, the compounds do indeed inhibit the biosynthesis of sterols downstream from lanosterol. A range of inhibitory potencies was observed, and the key enzyme being inhibited was believed to be P45014DM. Inhibitor efficacy was readily correlated with non-metabolized [24,25-3H]dihydrolanosterol, formation of 4,4-dimethyl-cholest-8-en-3 beta-ol, and formation of lathosterol, a sterol believed to be an excellent indicator of whole body cholesterol biosynthesis in humans.  相似文献   

4.
In contrast with the prevailing view, we report the inability of non-human primate platelets or arterial tissue to complete the biosynthesis of [14C]cholesterol from [14C]mevalonic acid in vitro or in vivo, or from performed [14C]lanosterol in vivo. The latter observation suggests that these tissues lack one or more components of the methyl sterol demethylase system.  相似文献   

5.
We have examined the sterol composition and metabolism of promyelocytic leukaemia cell lines (HL-60) after treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA). A variant cell line (Blast II cells) which is resistant to TPA was used as control. Analysis of the sterols of TPA-sensitive cells radiolabelled with [3H]leucine, [14C]acetate or [14C]pyruvate showed a high incorporation into cholesterol and a low incorporation in lanosterol + dihydrolanosterol. The inverse relationship was observed in TPA-resistant cells. Experiments with other cellular variants representing TPA-sensitive and TPA-resistant classes gave similar results. Analysis of the cellular sterol composition by gas chromatography confirmed that TPA-resistant cells are particularly rich in lanosterol/dihydrolanosterol. TPA treatment enhanced the incorporation of [14C]pyruvate into the sterol fraction of both cell types. This was accompanied by an alteration of incorporation into several lipids, particularly phospholipids. Pulse-chase studies with [14C]acetate revealed that TPA induced the release of radioactive lipids into the medium from HL-60 and Blast II cells. However this treatment released phospholipids from the TPA-sensitive cells and sterols and fatty acids from the TPA-resistant cells. We conclude that the sterol composition can regulate specific biochemical processes in the membrane and can be considered as a factor that plays a role in the responsiveness of HL-60 cells to TPA.  相似文献   

6.
Cholesterol biosynthesis was studied in rat-liver subcellular fractions incubated with DL-[2-14C]mevalonic acid in the presence and absence of triarimol (α-(2,4-dichlorophenyl)-α-phenyl-5-pyrimidine methanol). Triarimol strongly inhibits incorporation of radioactivity into cholesterol and this results in a large accumulation of radioactive lanosterol and 24,25-dihydro-lanosterol. The inhibition of lanosterol 14α-demethylase by triarimol was confirmed by assay of the enzyme in rat-liver microsomal fraction in the presence and absence of the inhibitor. Apart from a slight inhibition of Δ7-sterol-Δ5-dehydrogenase, triarimol did not affect the activity of any other enzyme involved in cholesterol biosynthesis from acetate.  相似文献   

7.
It was shown that 100mug quantities of 4,4'-dimethyl[2-(3)H(2)]cholesta-8,14-dien-3beta-ol (IIIa), tritiated cholesta-8,14-dien-3beta-ol, 4,4'-dimethyl[2-(3)H(2)]cholesta-7,14-dien-3beta-ol, dihydro[2-(3)H(2)]lanosterol and [24-(3)H]lanosterol were converted by a 10000g supernatant of rat liver homogenate into cholesterol in 17%, 54%, 6%, 9.5% and 24% yields respectively. From an incubation of dihydro[3alpha-(3)H]lanosterol with a rat liver homogenate in the presence of a trap up to 38% of the radioactivity was found to be associated with a fraction that was unambiguously shown to be 4,4'-dimethylcholesta-8,14-dien-3beta-ol. Another related compound, 4,4'-dimethylcholesta-7,14-dien-3beta-ol was also shown to be equally effective in its ability to trap compound (IIIa) from an incubation of dihydro[3alpha-(3)H]lanosterol. The mechanism of the further conversion of the compound (IIIa) into cholesterol occurred by the reduction of the 14,15-double bond and involved the addition of a hydrogen atom from the medium to C-15 and another from the 4-position of NADPH to C-14. Two possible mechanisms for the removal of the 14alpha-methyl group in sterol biosynthesis are discussed.  相似文献   

8.
A Chinese hamster ovary cell mutant, AR45, was selected for amphotericin B resistance after treatment with the mutagen ethyl methanesulfonate. The mutant is a cholesterol auxotroph with a deficiency in cholesterol biosynthesis. Whole cell experiments demonstrate that the mutant accumulates the C30 sterols, lanosterol and dihydrolanosterol, under culture conditions which promote active sterol biosynthesis. Metabolic studies show that the C29 sterol demethylation product of lanosterol, but not lanosterol itself, is actively converted to end product cholesterol by whole cells as well as by microsomal preparations derived from the mutant. Detectable amounts of several cytochromes can be observed spectrally in the AR45 demonstrating that it is not a general heme-deficient mutant. Collectively, these results characterize the AR45 mutant cells as being lanosterol 14 alpha-methyl demethylase-deficient. The cell line should prove useful in studying regulation of the demethylase enzyme and the putative endogenous regulatory oxysterol. It should also be a useful tool in the molecular cloning and elucidation of genetic properties of the demethylase.  相似文献   

9.
Carbon monoxide inhibited the removal of C-32 of dihydrolanosterol (I), but not of its metabolites 5 alpha-lanost-8-ene-3 beta,32-diol (II) and 3 beta-hydroxy-5 alpha-lanost-8-en-32-al (III). It appears therefore that cytochrome P-450 is a component of the enzyme system required to initiate oxidation of the 14 alpha-methyl group, but not of that responsible for the subsequent oxidation steps required for elimination of C-32 as formic acid. Non-radioactive compounds (II) and (III), when added to cell-free systems actively converting dihydrolanosterol into cholesterol, inhibited 14 alpha-demethylation measured by the rate of formation of labelled cholesterol from dihydro[1,7,15,22,26,30-14C]lanosterol or of labelled formic acid from dihydro[32-14C]lanosterol. However, neither compound (II) nor compound (III) accumulated radioactive label under these conditions. These observations could be attributed partly to inhibition of the initial oxidation of the 14 alpha-methyl group by compounds (II) and (III).  相似文献   

10.
Cholesterol biosynthesis from DL-[2-14C]mevalonic acid ([14C]MVA) was demonstrated in ovine ovarian follicles and isolated thecal tissues and granulosal cells incubated in vitro. Thecal tissues more readily synthesized cholesterol than did granulosal cells when incubated separately, but in the intact follicle the newly synthesized cholesterol distributed evenly between the two tissue layers, indicating that the theca could act as a supplementary source of cholesterol for the granulosal cells. Human chorionic gonadotrophin (hCG) added to the incubation medium was found to inhibit cholesterol biosynthesis from [14C]MVA by intact follicles and isolated thecal tissues, but not granulosal cells. This hCG-induced inhibition was evident in whole follicles incubated for 12--48 h, but not at 3--6 h, and was demonstrated in thecal tissues incubated for 3 h. In all cases where inhibition of cholesterol biosynthesis was observed, 14C label accumulated in a product characterized by thin layer and vapour phase chromatography as lanosterol, implying that the hCG block lies between lanosterol and cholesterol. Treatment of follicles with hCG also reduced the amount of 14C label incorporated into the cholesteryl ester fraction. These changes were accompanied by a corresponding reduction in the tissue content of cholesteryl ester, but there were no changes in the specific activities to indicate that newly synthesized cholesteryl ester was used selectively as a substrate for progestin biosynthesis.  相似文献   

11.
Summary Transfer of radiolabeled lipids from dictyosome-like structures (DLS) from testis tubules of the guinea pig as donor to unlabeled plasma membrane from testis tubules immobilized on nitrocellulose as acceptor was studied in a completely cell-free system. As a general label for lipids of the donor DLS, isolated testis tubules were incubated with [14C]acetate. Time- and temperature-dependent transfer of [14C]acetate labeled constituents was observed in the cellfree system. However, despite the fact that phospholipids and other constituents were highly labeled in the donor fraction, primarily radioactive sterols were transferred to the plasma membrane acceptor vesicles. Transfer at 37°C represented 0.4 to 0.7% of the total radiolabeled cholesterol at 37°C but little or no transfer occurred at 4°C. The sterols transferred exhibited Chromatographic mobilities corresponding to those of cholesterol and lanosterol. Similar results were obtained with [14C]mevalonic acid. In subsequent experiments, cholesterol transfer from DLS to plasma membrane was demonstrated by incubation of DLS with [3H]squalene which was converted into sterol or with [14C]cholesterol. Transfer of sterols required ATP, but not cytosol, and was both time- and temperature-dependent. DLS were more effective than either endoplasmic reticulum or plasma membrane as the donor fraction. The results from the cell-free analysis suggest a possible functional role of the DLS in sterol biogenesis and transfer to the plasma membrane during spermatid development.Abbreviations DLS dictyosome-like structure(s) - PBS phosphatebuffered saline - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - BSA bovine serum albumin  相似文献   

12.
The effects of Triton WR 1339, starvation and cholesterol diet on the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and on the rates of mevalonic acid (MVA) biosynthesis from acetyl-CoA and malonyl-CoA in the soluble (140 000 g) and microsomal fractions of rat liver, on the rate of incorporation of these substrates into squalene, cholesterol and lanosterol in the rat liver postmitochondrial fraction and on the rate of fatty acid biosynthesis was studied. The administration of Triton WR 1339 (200 mg per 100 g of body weight twice) stimulated the activity of HMG-CoA reductase and MVA biosynthesis from acetyl-CoA and malonyl-CoA in the intact and solubilized microsomal fractions and had no effect on these parameters in the soluble fraction. Starvation for 36 hrs did not cause inhibition of the reductase activity or MVA biosynthesis from both substrates in the soluble fraction. Alimentary cholesterol significantly increased the activity of HMG-CoA reductase, had no effect on the rate of MVA biosynthesis from acetyl-CoA and stimulated the malonyl-CoA incorporation in to MVA in the soluble fraction. Starvation an alimentary cholesterol inhibited the HMG-CoA reductase activity and MVA biosynthesis from both substrates in the solubilized microsomal fraction. Triton WR 1339 stimulated 4--19-fold the lipid formation in the total unsaponified fraction and its components i.e. squalene, lanosterol, cholesterol, from acetyl-CoA and only insignificantly (1,2--1,7-fold) increased malonyl-CoA incorporation into these compounds. Starvation and alimentary cholesterol repressed lanosterol and cholesterol biosynthesis from acetyl-CoA, decreased malonyl-CoA incorporation into these sterols and had no influence on squalene biosynthesis from the two substrates. Triton WR 1339 and starvation inhibited the acetyl-CoA carboxylase activity, unaffected by alimentary cholesterol. No significant changes in the rate of fatty acid biosynthesis from the substrates were observed. The data obtained provide evidence for the existence of autonomic pathways of MVA biosynthesis localized in the soluble and microsomal fractions of rat liver. The pathway of MVA biosynthesis in the soluble fraction is less sensitive to regulatory factors. Sterol biosynthesis from malonyl-CoA is also more resistant to regulatory effects than sterol biosynthesis from acetyl-CoA. This suggests that HMG-CoA reductase localized in the soluble fraction takes part in MVA and sterol biosynthesis from malonyl-CoA.  相似文献   

13.
Two sterols of the cholesterol biosynthetic pathway induce resumption of meiosis in mouse oocytes in vitro. The sterols, termed meiosis-activating sterols (MAS), have been isolated from human follicular fluid (FF-MAS, 4,4-dimethyl-5 alpha-cholest-8,14,24-triene-3 beta-ol) and from bull testicular tissue (T-MAS, 4,4-dimethyl-5 alpha-cholest-8,24-diene-3 beta-ol). FF-MAS is the first intermediate in the cholesterol biosynthesis from lanosterol and is converted to T-MAS by sterol delta 14-reductase. An inhibitor of delta 7-reductase and delta 14 reductase, AY9944-A-7, causes cells with a constitutive cholesterol biosynthesis to accumulate FF-MAS and possibly other intermediates between lanosterol and cholesterol. The aim of the present study was to evaluate whether AY9944-A-7 added to cultures of cumulus-oocyte complexes (COC) from mice resulted in accumulation of MAS and meiotic maturation. AY9944-A-7 stimulated dose dependently (5-25 mumol l-1) COC to resume meiosis when cultured for 22 h in alpha minimal essential medium (alpha-MEM) containing 4 mmol hypoxanthine l-1, a natural inhibitor of meiotic maturation. In contrast, naked oocytes were not induced to resume meiosis by AY9944-A-7. When cumulus cells were separated from their oocytes and co-cultured, AY9944-A-7 did not affect resumption of meiosis, indicating that intact oocyte-cumulus cell connections are important for AY9944-A-7 to exert its effect on meiosis. Cultures of COC with 10 mumol AY9944-A-7 l-1 in the presence of [3H]mevalonic acid, a natural precursor for steroid synthesis, resulted in accumulation of labelled FF-MAS, which had an 11-fold greater amount of radioactivity incorporated per COC compared with the control culture without AY9944-A-7. In contrast, incorporation of radioactivity into the cholesterol fraction was reduced 30-fold in extracts from the same oocytes. The present findings demonstrate for the first time that COC can synthesize cholesterol from mevalonate and accumulate FF-MAS in the presence of AY9944-A-7. Furthermore, AY9944-A-7 stimulated meiotic maturation dose dependently, indicating that FF-MAS, and possibly other sterol intermediates of the cholesterol synthesis pathway, play a central role in stimulating mouse oocytes to resume meiosis. The results also indicate that oocytes may not synthesize steroids from mevalonate.  相似文献   

14.
As a major component of mammalian cell plasma membranes, cholesterol is essential for cell growth. Accordingly, the restriction of cholesterol provision has been shown to result in cell proliferation inhibition. We explored the potential regulatory role of cholesterol on cell cycle progression. MOLT-4 and HL-60 cell lines were cultured in a cholesterol-deficient medium and simultaneously exposed to SKF 104976, which is a specific inhibitor of lanosterol 14-alpha demethylase. Through HPLC analyses with on-line radioactivity detection, we found that SKF 104976 efficiently blocked the [(14)C]-acetate incorporation into cholesterol, resulting in an accumulation of lanosterol and dihydrolanosterol, without affecting the synthesis of mevalonic acid. The inhibitor also produced a rapid and intense inhibition of cell proliferation (IC(50) = 0.1 microM), as assessed by both [(3)H]-thymidine incorporation into DNA and cell counting. Flow cytometry and morphological examination showed that treatment with SKF 104976 for 48 h or longer resulted in the accumulation of cells specifically at G2 phase, whereas both the G1 traversal and the transition through S were unaffected. The G2 arrest was accompanied by an increase in the hyperphosphorylated form of p34(cdc2) and a reduction of its activity, as determined by assaying the H1 histone phosphorylating activity of p34(cdc2) immunoprecipitates. The persistent deficiency of cholesterol induced apoptosis. However, supplementing the medium with cholesterol, either in the form of LDL or free cholesterol dissolved in ethanol, completely abolished these effects, whereas mevalonate was ineffective. Caffeine, which abrogates the G2 checkpoint by preventing p34(cdc2) phosphorylation, reduced the accumulation in G2 when added to cultures containing cells on transit to G2, but was ineffective in cells arrested at G2 by sustained cholesterol starvation. Cells arrested in G2, however, were still viable and responded to cholesterol provision by activating p34(cdc2) and resuming the cell cycle. We conclude that in both lymphoblastoid and promyelocytic cells, cholesterol availability governs the G2 traversal, probably by affecting p34(cdc2) activity.  相似文献   

15.
THE BIOSYNTHESIS OF CHOLESTEROL AND OTHER STEROLS BY BRAIN TISSUE   总被引:1,自引:0,他引:1  
Abstract— The distribution of 14C into several subcellular fractions of adult rat brain was studied as a function of time, following intracerebral injection of [2-14C]mevalonic acid. As expected from previous studies, the microsomal fraction was indicated as the site of sterol biosynthesis. The myelin fraction showed a marked and early uptake of I4C-labelled, digitonin-precipitable material. This was assumed to be a non-enzymic uptake of sterol intermediates. The mitochondrial fraction exhibited a rapid uptake of 14C-labelled, nonsaponifiable material, but a very slow accumulation of 14C-labelled, digitonin-precipitable product. Examination of the nonsaponifiable 14C-fractions by TLC showed a rapid appearance of labelled 4-desmethyl sterols in the microsomal fraction. The myelin fraction selectively retained 4,4'-dimethyl sterol but seemed to release this with time, possibly to be further metabolized by the microsomes. Examination of [14C]digitonin-precipitable material by the dibromide method showed that although labelled 4-desmethyl sterol appeared quite early, cholesterol itself was formed slowly in all fractions.  相似文献   

16.
The effect of cholesterol diet on the rate of mevalonic acid biosynthesis from 1-14C acetyl-CoA, 2-14C malonyl-CoA and the incorporation of these substrates into sterols and bile acids in rabbit liver were studied. Simultaneously, the activities of 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CoA reductase) and acetyl-CoA carboxylase and the biosynthesis of fatty acids from acetyl-CoA and malonyl-CoA were measured. Hypercholesterolemia was found to be concomitant with the inhibition of acetyl-CoA carboxylase activity only in cell-free (700 g) and mitochondrial fractions and slightly decreased the incorporation of acetyl-CoA and malonyl-CoA into fatty acids in the postmitochondrial fraction. The HMG-CoA reductase activity in all subcellular fractions except for the postmicrosomal one was inhibited under these conditions. A significant decrease of acetyl-CoA incorporation and an increase in malonyl-CoA incorporation into mevalonic acid in all liver fractions except for microsomal one were observed in rabbits with hypercholesterolemia. These data provide evidence for the existence of two pathways of mevalonic acid synthesis from the above-said substrates that are differently sensitive to cholesterol. Cholesterol feeding resulted in a decreased synthesis of the total unsaponified fraction including cholesterol from acetyl-CoA, malonyl-CoA and mevalonic acid. The rate of incorporation of these substrates into lanosterol was unchanged. All the indicated substrates (acetyl-CoA, malonyl-CoA, mevalonic acid) are precursors of bile acid synthesis in rabbit liver. Cholesterol feeding and the subsequent development of hypercholesterolemia resulted in bile acid synthesis stimulation, preferentially in the formation of the cholic + deoxycholic acids from these precursors.  相似文献   

17.
The essential oxygen requirement for sterol biosynthesis dates this molecule as a relative latecomer in cellular evolution. Structural details of the cholesterol molecule and related sterols can be rationalized in terms of optimal hydrophobic interactions between the planar sterol ring system and phospholipid acyl chains in the membrane bilayer. The prediction that the cholesterol precursor lanosterol (4,4',14 trimethyl cholastadienol) is incompetent for membrane function is verified by in vivo experiments with eucaryotic sterol auxotrophs and microviscosity measurements of sterol-containing artificial membranes. For procaryotic cells the sterol specificity is very much broader. Methylococcus capsulatus produces 4,4-dimethyl- and 4-monomethyl sterols, but not sterols of the cholesterol type. Similarly lanosterol and its partially demethylated derivatives satisfy the sterol requirement of Mycoplasma capricolum. A more primitive but unspecified role of cyclized squalene derivatives is therefore postulated for procaryotic membranes. The finding that cholesterylmethyl ether satisfies the sterol requirement of certain microbial systems is at variance with current views on the role played by the sterol hydroxyl group in membrane organization and function.  相似文献   

18.
The flavonoid quercetin 3-glucoside (Q3G) protected SH-SY5Y, HEK293, and MCF-7 cells against hydrogen peroxide-induced oxidative stress. cDNA microarray studies suggested that Q3G-pretreated cells subjected to oxidative stress up-regulate the expression of genes associated with lipid and cholesterol biosynthesis. Q3G pretreatment elevated both the expression and activation of sterol regulatory element-binding protein-2 (SREBP-2) only in SH-SY5Y cells subjected to oxidative stress. Inhibition of SREBP-2 expression by small interfering RNA or small molecule inhibitors of 2,3-oxidosqualene:lanosterol cyclase or HMG-CoA reductase blocked Q3G-mediated cytoprotection in SH-SY5Y cells. By contrast, Q3G did not protect either HEK293 or MCF-7 cells via this signaling pathway. Moreover, the addition of isopentenyl pyrophosphate rescued SH-SY5Y cells from the inhibitory effect of HMG-CoA reductase inhibition. Last, Q3G pretreatment enhanced the incorporation of [(14)C]acetate into [(14)C]cholesterol in SH-SY5Y cells under oxidative stress. Taken together, these studies suggest a novel mechanism for flavonoid-induced cytoprotection in SH-SY5Y cells involving SREBP-2-mediated sterol synthesis that decreases lipid peroxidation by maintaining membrane integrity in the presence of oxidative stress.  相似文献   

19.
Hydrocortisone in physiologic concentrations resulted in a reduction in sterol synthesis by cultured normal human skin fibroblasts. These changes were observed when [14C]acetate, [14C]octanoic acid and 3H2O were used as precursors. However, the incorporation of [3H]mevalonic acid lactone into digitonin-precipitable sterols was not affected by hydrocortisone, suggesting that hydrocortisone inhibits sterol synthesis at a site prior to the formation of mevalonic acid. In contrast, the activity of hydroxymethylglutaryl-CoA reductase was stimulated several-fold by the hormone. Thus, the inhibitory effect of hydrocortisone on the cholesterol synthetic pathway may be on hydroxymethylglutaryl-CoA synthase.  相似文献   

20.
The lanosterol 14 alpha-methyl demethylase inhibitors miconazole and ketoconazole have been used to assess their effects upon cholesterol biosynthesis in cultured Chinese hamster ovary cells. In Chinese hamster ovary cells treated with either agent, an initial accumulation of lanosterol and dihydrolanosterol has been observed. At elevated concentrations, however, ketoconazole, but not miconazole, causes the preferential accumulation of 24,25-epoxylanosterol and squalene 2,3:22,23-dioxide. These metabolites accumulate at the expense of lanosterol, thereby demonstrating a second site of inhibition for ketoconazole in the sterol biosynthetic pathway. Both demethylase inhibitors produced a biphasic modulation of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme in the cholesterol biosynthetic pathway. The biphasic modulation is characterized by low levels of the drugs suppressing HMG-CoA reductase activity which is restored to either control or above control values at higher drug concentrations. This modulatory effect of the lanosterol demethylase inhibitors upon HMG-CoA reductase was not observed in the lanosterol 14 alpha-methyl demethylase-deficient mutant AR45. Suppression of HMG-CoA reductase activity is shown to be due to a decrease in the amount of enzyme protein consistent with a steroidal regulatory mechanism. Collectively, the results establish that lanosterol 14 alpha-methyl demethylation, but not 24,25-epoxylanosterol formation, is required to suppress HMG-CoA reductase in the manner described by lanosterol demethylase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号