首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benton R  St Johnston D 《Cell》2003,115(6):691-704
PAR-1 kinases are required for polarity in diverse cell types, such as epithelial cells, where they localize laterally. PAR-1 activity is believed to be transduced by binding of 14-3-3 proteins to its phosphorylated substrates, but the relevant targets are unknown. We show that PAR-1 phosphorylates Bazooka/PAR-3 on two conserved serines to generate 14-3-3 binding sites. This inhibits formation of the Bazooka/PAR-6/aPKC complex by blocking Bazooka oligomerization and binding to aPKC. In epithelia, this complex localizes apically and defines the apical membrane, whereas Bazooka lacking PAR-1 phosphorylation/14-3-3 binding sites forms ectopic lateral complexes. Lateral exclusion by PAR-1/14-3-3 cooperates with apical anchoring by Crumbs/Stardust to restrict Bazooka localization, and loss of both pathways disrupts epithelial polarity. PAR-1 also excludes Bazooka from the posterior of the oocyte, and disruption of this regulation causes anterior-posterior polarity defects. Thus, antagonism of Bazooka by PAR-1/14-3-3 may represent a general mechanism for establishing complementary cortical domains in polarized cells.  相似文献   

2.
Chronic lipopolysaccharide (LPS) inhalation in rodents recapitulates many classic features of chronic obstructive pulmonary disease seen in humans, including airways hyperresponsiveness, neutrophilic inflammation, cytokine production in the lung, and small airways remodeling. CD14-deficient mice (C57BL/6(CD14-/-)) have an altered response to systemic LPS, and yet the role of CD14 in the response to inhaled LPS has not been defined. We observed that C57BL/6(CD14-/-) mice demonstrate no discernable physiological or inflammatory response to a single LPS inhalation challenge. However, the physiological (airways hyperresponsiveness) and inflammatory (presence of neutrophils and TNF-alpha in whole lung lavage fluid) responsiveness to inhaled LPS in C57BL/6(CD14-/-) mice was restored by instilling soluble CD14 intratracheally. Intratracheal instillation of wild-type macrophages into C57BL/6(CD14-/-) mice restored neutrophilic inflammation only and failed to restore airways hyperresponsiveness or TNF-alpha protein in whole lung lavage. These findings demonstrate that CD14 is critical to LPS-induced airway disease and that macrophage CD14 is sufficient to initiate neutrophil recruitment into the airways but that CD14 may need to interact with other cell types as well for the development of airways hyperresponsiveness and for cytokine production.  相似文献   

3.
Sfrp5 is not essential for axis formation in the mouse   总被引:2,自引:0,他引:2  
Secreted frizzled related protein (Sfrp) genes encode extracellular factors that can modulate Wnt signaling. During early post-implantation mouse development Sfrp5 is expressed in the anterior visceral endoderm (AVE) and the ventral foregut endoderm. The AVE is important in anterior-posterior axis formation and the ventral foregut endoderm contributes to multiple gut tissues. Here to determine the essential role of Sfrp5 in early mouse development we generated Sfrp5-deficient mice by gene targeting. We report that Sfrp5-deficient mice are viable and fertile. To determine whether the absence of an axis phenotype might be due to genetic redundancy with Dkk1 in the AVE we generated Sfrp5;Dkk1 double mutant mice. AVE development and primitive streak formation appeared normal in Sfrp5(-/-);Dkk1(-/-) embryos. These results indicate that Sfrp5 is not essential for axis formation or foregut morphogenesis in the mouse and also imply that Sfrp5 and Dkk1 together are not essential for AVE development.  相似文献   

4.
Recent reports have demonstrated the in vivo association of Raf-1 with members of the 14-3-3 protein family. To address the significance of the Raf-1-14-3-3 interaction, we investigated the enzymatic activity and biological function of Raf-1 in the presence and absence of associated 14-3-3. The interaction between these two molecules was disrupted in vivo and in vitro with a combination of molecular and biochemical techniques. Biochemical studies demonstrated that the enzymatic activities of Raf-1 were equivalent in the presence and absence of 14-3-3. Furthermore, mixing of purified Raf-1 and 14-3-3 in vitro was not sufficient to activate Raf-1. With a molecular approach, Cys-165 and Cys-168 as well as Ser-259 were identified as residues of Raf-1 required for the interaction with 14-3-3. Cys-165 and Cys-168 are located within the conserved cysteine-rich region of the CR1 domain, and Ser-259 is a conserved site of serine phosphorylation found within the CR2 domain. Mutation of either Cys-165 and Cys-168 or Ser-259 prevented the stable interaction of Raf-1 with 14-3-3 in vivo. Consistent with the model in which a site of serine phosphorylation is involved in the Raf-1-14-3-3 interaction, dephosphorylated Raf-1 was unable to associate with 14-3-3 in vitro. Phosphorylation may represent a general mechanism mediating 14-3-3 binding, because dephosphorylation of the Bcr kinase (known to interact with 14-3-3) also eliminated its association with 14-3-3. Finally, mutant Raf-1 proteins unable to stably interact with 14-3-3 exhibited enhanced enzymatic activity in human 293 cells and Xenopus oocytes and were biologically activated, as demonstrated by their ability to induced meiotic maturation of Xenopus oocytes. However, in contrast to wild-type Raf-1, activation of these mutants was independent of Ras. Our results therefore indicate that interaction with 14-3-3 is not essential for Raf-1 function.  相似文献   

5.
14-3-3 proteins mediate an essential anti-apoptotic signal   总被引:18,自引:0,他引:18  
The 14-3-3 proteins are a family of highly conserved eukaryotic regulatory molecules that play important roles in many biological processes including cell cycle control and regulation of cell death. They are able to carry out these effects through binding and modulating the activity of a host of signaling proteins. The ability of 14-3-3 to inhibit Bad and other proapoptotic proteins argues that 14-3-3 can support cell survival. To examine this issue in a global sense, a specific inhibitor of 14-3-3/ligand interactions, difopein, was used. Difopein expression led to induction of apoptosis. Studies using various components of survival and death signaling pathways were consistent with a vital role for 14-3-3/ligand interactions in signal transduction from upstream pro-survival kinases to the core apoptotic machinery. Because these kinases often become activated during oncogenesis, the effect of difopein on cell death induced by antineoplastic drugs was examined. It was found that difopein enhances the ability of cisplatin to kill cells. These data support the model that 14-3-3, through binding to Bad and other ligands, is critical for cell survival signaling. Inhibition of 14-3-3 may represent a useful therapeutic target for treatment of cancer and other diseases involving inappropriate cell survival.  相似文献   

6.
Phosphatidyl-inositol-3-kinase (PI3K)-Akt pathway is essential for conferring cardioprotection in response to ischaemic preconditioning (IPC) stimulus. However, the role of the individual Akt isoforms expressed in the heart in mediating the protective response to IPC is unknown. In this study, we investigated the specific contribution of Akt1 and Akt2 in cardioprotection against ischaemia-reperfusion (I-R) injury. Mice deficient in Akt1 or Akt2 were subjected to in vivo regional myocardial ischaemia for 30 min. followed by reperfusion for 2 hrs with or without a prior IPC stimulus. Our results show that mice deficient in Akt1 were resistant to protection with either one or three cycles of IPC stimulus (42.7 ± 6.5% control versus 38.5 ± 1.9% 1 χ IPC, N = 6, NS; 41.4 ± 6.3% control versus 32.4 ± 3.2% 3 χ IPC, N = 10, NS). Western blot analysis, performed on heart samples taken from Akt1(-/-) mice subjected to IPC, revealed an impaired phosphorylation of GSK-3β, a downstream effector of Akt, as well as Erk1/2, the parallel component of the reperfusion injury salvage kinase pathway. Akt2(-/-) mice, which exhibit a diabetic phenotype, however, were amenable to protection with three but not one cycle of IPC (46.4 ± 5.6% control versus 35.9 ± 5.0% in 1 χ IPC, N = 6, NS; 47.0 ± 6.0% control versus 30.8 ± 3.3% in 3 χ IPC, N = 6; *P = 0.039). Akt1 but not Akt2 is essential for mediating a protective response to an IPC stimulus. Impaired activation of GSK-3β and Erk1/2 might be responsible for the lack of protective response to IPC in Akt1(-/-) mice. The rise in threshold for protection in Akt2(-/-) mice might be due to their diabetic phenotype.  相似文献   

7.
The assembly of metazoan Sm-class small nuclear ribonucleoproteins (snRNPs) is an elaborate, step-wise process that takes place in multiple subcellular compartments. The initial steps, including formation of the core RNP, are mediated by the survival motor neuron (SMN) protein complex. Loss-of-function mutations in human SMN1 result in a neuromuscular disease called spinal muscular atrophy. The SMN complex is comprised of SMN and a number of tightly associated proteins, collectively called Gemins. In this report, we identify and characterize the fruitfly ortholog of the DEAD box protein, Gemin3. Drosophila Gemin3 (dGem3) colocalizes and interacts with dSMN in vitro and in vivo. RNA interference for dGem3 codepletes dSMN and inhibits efficient Sm core assembly in vitro. Transposon insertion mutations in Gemin3 are larval lethals and also codeplete dSMN. Transgenic overexpression of dGem3 rescues lethality, but overexpression of dSMN does not, indicating that loss of dSMN is not the primary cause of death. Gemin3 mutant larvae exhibit motor defects similar to previously characterized Smn alleles. Remarkably, appreciable numbers of Gemin3 mutants (along with one previously undescribed Smn allele) survive as larvae for several weeks without pupating. Our results demonstrate the conservation of Gemin3 protein function in metazoan snRNP assembly and reveal that loss of either Smn or Gemin3 can contribute to neuromuscular dysfunction.  相似文献   

8.
9.
We show that the Drosophila gene rhea, isolated because its wing blister phenotype is typical of mutants affecting integrin function, encodes talin. Embryos deficient in talin have very similar phenotypes to integrin (betaPS) null embryos, including failure in germ band retraction and muscle detachment. We demonstrate that talin is not required for the presence of integrins on the cell surface or their localization at muscle termini. However, talin is required for formation of focal adhesion-like clusters of integrins on the basal surface of imaginal disc epithelia and junctional plaques between muscle and tendon cells. These results indicate that talin is essential for integrin function and acts by stably linking clusters of ECM-linked integrins to the cytoskeleton.  相似文献   

10.
The PAR-1 kinase is required for the posterior localisation of the germline determinants in C. elegans and Drosophila, and localises to the posterior of the zygote and the oocyte in each case. We show that Drosophila PAR-1 is also required much earlier in oogenesis for the selection of one cell in a germline cyst to become the oocyte. Although the initial steps in oocyte determination are delayed, three markers for oocyte identity, the synaptonemal complex, the centrosomes and Orb protein, still become restricted to one cell in mutant clones. However, the centrosomes and Orb protein fail to translocate from the anterior to the posterior cortex of the presumptive oocyte in region 3 of the germarium, and the cell exits meiosis and becomes a nurse cell. Furthermore, markers for the minus ends of the microtubules also fail to move from the anterior to the posterior of the oocyte in mutant clones. Thus, PAR-1 is required for the maintenance of oocyte identity, and plays a role in microtubule-dependent localisation within the oocyte at two stages of oogenesis. Finally, we show that PAR-1 localises on the fusome, and provides a link between the asymmetry of the fusome and the selection of the oocyte.  相似文献   

11.
The COP9 signalosome (CSN) is linked to signaling pathways and ubiquitin-dependent protein degradation in yeast, plant and mammalian cells, but its roles in Drosophila development are just beginning to be understood. We show that during oogenesis CSN5/JAB1, one subunit of the CSN, is required for meiotic progression and for establishment of both the AP and DV axes of the Drosophila oocyte. The EGFR ligand Gurken is essential for both axes, and our results show that CSN5 mutations block the accumulation of Gurken protein in the oocyte. CSN5 mutations also cause the modification of Vasa, which is known to be required for Gurken translation. This CSN5 phenotype - defective axis formation, reduced Gurken accumulation and modification of Vasa - is very similar to the phenotype of the spindle-class genes that are required for the repair of meiotic recombination-induced, DNA double-strand breaks. When these breaks are not repaired, a DNA damage checkpoint mediated by mei-41 is activated. Accordingly, the CSN5 phenotype is suppressed by mutations in mei-41 or by mutations in mei-W68, which is required for double strand break formation. These results suggest that, like the spindle-class genes, CSN5 regulates axis formation by checkpoint-dependent, translational control of Gurken. They also reveal a link between DNA repair, axis formation and the COP9 signalosome, a protein complex that acts in multiple signaling pathways by regulating protein stability.  相似文献   

12.
The Drosophila protein DEAF-1 is a sequence-specific DNA binding protein that was isolated as a putative cofactor of the Hox protein Deformed (Dfd). In this study, we analyze the effects of loss or gain of DEAF-1 function on Drosophila development. Maternal/zygotic mutations of DEAF-1 largely result in early embryonic arrest prior to the expression of zygotic segmentation genes, although a few embryos develop into larvae with segmentation defects of variable severity. Overexpression of DEAF-1 protein in embryos can induce defects in migration/closure of the dorsal epidermis, and overexpression in adult primordia can strongly disrupt the development of eye or wing. The DEAF-1 protein associates with many discrete sites on polytene chromosomes, suggesting that DEAF-1 is a rather general regulator of gene expression.  相似文献   

13.
Cyclin D1 is an essential mediator of apoptotic neuronal cell death.   总被引:25,自引:3,他引:22       下载免费PDF全文
Many neurons in the developing nervous system undergo programmed cell death, or apoptosis. However, the molecular mechanism underlying this phenomenon is largely unknown. In the present report, we present evidence that the cell cycle regulator cyclin D1 is involved in the regulation of neuronal cell death. During neuronal apoptosis, cyclin D1-dependent kinase activity is stimulated, due to an increase in cyclin D1 levels. Moreover, artificial elevation of cyclin D1 levels is sufficient to induce apoptosis, even in non-neural cell types. Cyclin D1-induced apoptosis, like neuronal apoptosis, can be inhibited by 21 kDa E1B, Bcl2 and pRb, but not by 55 kDa E1B. Most importantly, however, overexpression of the cyclin D-dependent kinase inhibitor p16INK4 protects neurons from apoptotic cell death, demonstrating that activation of endogenous cyclin D1-dependent kinases is essential during neuronal apoptosis. These data support a model in which neuronal apoptosis results from an aborted attempt to activate the cell cycle in terminally differentiated neurons.  相似文献   

14.
Big mitogen-activated kinase 1 (BMK1/ERK5) is a member of the MAPK family activated by growth factors that mediates cell growth and survival. Previous data show that BMK1 can be activated by steady laminar flow and is atheroprotective by preventing endothelial cells from undergoing apoptosis. The primary structure of BMK1 is distinct from other MAPK members by virtue of a unique long C-tail, suggesting specific mechanisms of regulation. To characterize regulatory mechanisms for BMK1 function, we identified binding proteins by yeast two-hybrid analysis. Among these proteins, the scaffolding protein 14-3-3 was identified. BMK1 bound to 14-3-3beta in vitro and in vivo as demonstrated by glutathione S-transferase (GST)-14-3-3beta fusion protein pull-down assays and coimmunoprecipitation. Phosphorylation of BMK1 was most likely required for this interaction. GST-14-3-3beta pull-down assays using truncated constructs of BMK1 and site-directed BMK1 mutants demonstrated that the interaction requires serine 486 within the C terminus of BMK1. BMK1 bound to 14-3-3beta basally, and the interaction was greatly abrogated when BMK1 was activated. The interaction of 14-3-3beta and BMK1 inhibited kinase activities stimulated by constitutively active (CA)-MEK5 and epidermal growth factor. Mutation of serine 486 (BMK1-S486A) prevented the interaction with 14-3-3beta and enhanced BMK1 activity upon epidermal growth factor stimulation. These data demonstrate an inhibitory function for 14-3-3beta binding to BMK1 and show that serine 486 phosphorylation represents a novel regulatory mechanism for BMK1.  相似文献   

15.
16.
Transport of liquids or gases in biological tubes is fundamental for many physiological processes. Our knowledge on how tubular organs are formed during organogenesis and tissue remodeling has increased dramatically during the last decade. Studies on different animal systems have helped to unravel some of the molecular mechanisms underlying tubulogenesis. Tube architecture varies dramatically in different organs and different species, ranging from tubes formed by several cells constituting the cross section, tubes formed by single cells wrapping an internal luminal space or tubes that are formed within a cell. Some tubes display branching whereas others remain linear without intersections. The modes of shaping, growing and pre-patterning a tube are also different and it is still not known whether these diverse architectures and modes of differentiation are realized by sharing common signaling pathways or regulatory networks. However, several recent investigations provide evidence for the attractive hypothesis that the Drosophila cardiogenesis and heart tube formation shares many similarities with primary angiogenesis in vertebrates. Additionally, another important step to unravel the complex system of lumen formation has been the outcome of recent studies that junctional proteins, matrix components as well as proteins acting as attractant and repellent cues play a role in the formation of the Drosophila heart lumen. In this study we show the requirement for the repulsively active Unc5 transmembrane receptor to facilitate tubulogenesis in the dorsal vessel of Drosophila. Unc5 is localized in the luminal membrane compartment of cardiomyocytes and animals lacking Unc5 fail to form a heart lumen. Our findings support the idea that Unc5 is crucial for lumen formation and thereby represents a repulsive cue acting during Drosophila heart tube formation.  相似文献   

17.
18.
Cilia are microtubule-based, hair-like organelles involved in sensory function or motility, playing critical roles in many physiological processes such as reproduction, organ development, and sensory perception. In insects, cilia are restricted to certain sensory neurons and sperms, being important for chemical and mechanical sensing, and fertility. Although great progress has been made regarding the mechanism of cilia assembly, the formation of insect cilia remains poorly understand, even in the insect model organism Drosophila. Intraflagellar transport (IFT) is a cilia-specific complex that traffics protein cargos bidirectionally along the ciliary axoneme and is essential for most cilia. Here we investigated the role of IFT52, a core component of IFT-B, in cilia/flagellar formation in Drosophila. We show that Drosophila IFT52 is distributed along the sensory neuronal cilia, and is essential for sensory cilia formation. Deletion of Ift52 results in severe defects in cilia-related sensory behaviors. It should be noted that IFT52 is not detected in spermatocyte cilia or sperm flagella of Drosophila. Accordingly, ift52 mutants can produce sperms with normal motility, supporting a dispensable role of IFT in Drosophila sperm flagella formation. Altogether, IFT52 is a conserved protein essential for sensory cilia formation and sensory neuronal function in insects.  相似文献   

19.
The evolutionarily-conserved 14-3-3 proteins regulate many cellular processes through binding to various phosphorylated targets in eukaryotes. It first appears in Dictyostelium, however its role in this organism is poorly understood. Here we show that down-regulation of the 14-3-3 impairs chemotaxis and causes multiple-tip formation in Dictyostelium. Mechanistically, the 14-3-3 is a critical component of cyclic AMP (cAMP) signaling and binds to nearly a hundred of proteins in Dictyostelium, including a number of evolutionarily-conserved proteins. 14-3-3 − interaction with its targets is up-regulated in response to developmental cues/regulators including starvation, osmotic stress and cAMP. cAMP stimulates 14-3-3 − binding to phospho-Ser431 on a guanine nucleotide exchange factor Gef-Q. Interestingly, overexpression of Gef-QSer431Ala mutant but not wild-type Gef-Q protein causes a multiple-tip phenotype in Dictyostelium, which partially resembles phenotypes of the 14-3-3 − deficient mutant. Collectively, these data demonstrate that the 14-3-3 plays an important role in Dictyostelium and may help to deepen our understanding of the evolution of 14-3-3 − interactomes in eukaryotes.  相似文献   

20.
The human immunodeficiency virus type 1 (HIV-1) virion infectivity factor (Vif) overcomes the antiviral activity of APOBEC3G to protect HIV-1 DNA from G-to-A hypermutation. Vif targets APOBEC3G for ubiquitination and proteasomal degradation by forming an SCF-like E3 ubiquitin ligase complex composed of Cullin5, Elongin B, and Elongin C (Vif-BC-Cul5) through a novel SOCS-box motif. In this paper, we have established an in vitro ubiquitin conjugation assay with purified Vif-BC-Cul5 complex and reported that the Vif-BC-Cul5 complex could function as an E3 ligase for APOBEC3G in vitro. A Vif-BC-Cul5 complex promotes the in vitro ubiquitination of the wild type, APOBEC3G but not that of D128K mutant, which does not interact with Vif. We have also investigated several loss-of-function Vif mutants. One mutant, SLQ144/146AAA, lost its activity on APOBEC3G because it could not form a complex due to mutations in SOCS-box motif. Other mutants, C114S and C133S, also lost their activity because of loss of the E3 ligase activity of a Vif-BC-Cul5 complex, although these mutants retained the ability to bind to APOBEC3G as well as Cul5 complex. These findings suggest that the E3 ubiquitin ligase activity of the Vif-BC-Cul5 complex is essential for Vif function against APOBEC3G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号