首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As enzymatic hydroxylation of 5 alpha-androstane-3 beta,17 beta-diol (3 beta-diol) may be a factor in controlling the 5 alpha-dihydrotestosterone (DHT) content in the prostate, we were interested in activity and distribution of these enzymes in epithelium and stroma of human benign prostatic hyperplasia (BPH). The enzyme activities were measured after mechanical separation of BPH tissue from 15 patients of various ages into stroma and epithelium, and optimization of the in vitro transformation of 3 beta-diol to hydroxylated products, which were analyzed by HPLC. The main results were: (1) 3 beta-diol was hydroxylated at C-7 alpha, C-7 beta, C-6 alpha, and C-6 beta. (2) The mean Michaelis constant Km (nM +/- SEM) for hydroxylation at C-7 alpha(beta) (168 +/- 21) was significantly lower than at C-6 alpha(beta) (601 +/- 43) without differences between stroma and epithelium. (3) Hydroxylation at alpha position dominated significantly over that at beta. (4) The mean maximal metabolic rate Vmax (pmol . mg protein-1 . h-1) of hydroxylation at C-6 alpha was about 7-fold lower in stroma (3.4 +/- 0.2) than in epithelium (23.8 +/- 4.1), concerning the other hydroxylations, Vmax was about 1.6-fold lower in stroma. (5) With increasing age of the patients there was a significant decrease of the 3 beta-diol hydroxylation in stroma and epithelium. It is discussed that the significantly lower activity of 3 beta-diol hydroxylation in stroma compared to epithelium and the decrease of activity with increasing age might potentiate the DHT accumulation in stroma of BPH.  相似文献   

2.
5 alpha-Dihydrotestosterone 3 alpha(beta)-hydroxysteroid dehydrogenase [3 alpha(beta)-HSDH] [EC 1.1.1.50/EC 1.1.1.51] which catalyses the conversion of 5 alpha-dihydrotestosterone (5 alpha-DHT) to both 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol was purified to an apparent homogeneous state using cytosol of three human hyperplastic prostates by a 4-step purification procedure. After each purification step 3 alpha-HSDH activity was coincident with 3 beta-HSDH activity. On average, specific 3 alpha-HSDH activity was enriched 856-fold, specific 3 beta-HSDH activity 749-fold compared to human prostatic cytosol using anion exchange, hydrophobic interaction, gel filtration and affinity chromatography. Examination of the purified enzyme by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS) revealed a single protein band with silver staining. The molecular weight of the enzyme was estimated as 33 kDa by SDS-polyacrylamide gel electrophoresis and as 28 kDa by Sephacryl S-200 gel filtration indicating that the native 3 alpha(beta)-HSDH is a monomer. In the presence of the preferred co-factor, NADPH, the purified enzyme had a mean apparent Km for 5 alpha-DHT of 3.9 microM and a Vmax of 93.3 nmol (mg protein)-1 h-1 with regard to 3 alpha-HSDH activity, and a Km of 6.3 microM and a Vmax of 20.6 nmol (mg protein)-1 h-1 with regard to 3 beta-HSDH activity.  相似文献   

3.
In order to delineate differences in the mechanism of androgen action in epithelium (E) and stroma (S) of the human prostate, we studied the 17 beta-hydroxysteroid dehydrogenase (17 beta-HSDH) in these tissues of benign prostatic hyperplasia (BPH). Tissue was obtained by suprapubic prostatectomy. E and S were separated; samples were homogenized in buffer and incubated with [3H] steroids (4-androstenedione (Ae), estrone (E1), or dehydroepiandrosterone (DHEA] and NADH (4.2 mmol/l) as cosubstrate for 60 min at 37 degrees C. Separation and quantification of the metabolites were performed by TLC and LSC, respectively. The main results were: (1) Following incubation with DHEA and E1, only the metabolites 5-androstene-3 beta,17 beta-diol and estradiol, respectively, were found. Following incubation with Ae, testosterone, 5 alpha-dihydrotestosterone and 5 alpha-androstane-3 alpha-(beta),17 beta-diol were detected as metabolites (the sum of these metabolites were used for calculations). (2) The Michaelis constants were identical in E and S (mean +/- SEM (n), mumol/l, Ae 6.92 +/- 1.01, E1 7.84 +/- 0.69, DHEA 3.73 +/- 0.38). (3) The maximum velocity rate for the three substrates in E was 5-10-fold that in S (P at least less than 0.01), the value in the whole tissue homogenate (WT) being intermediate (pmol/mg protein h), for Ae: E 383 +/- 56, S 40 +/- 3, WT 75 +/- 13; for E1: E 362 +/- 71, S 33 +/- 4, WT 63 +/- 8; for DHEA: E 132 +/- 21, S 26 +/- 4, WT 36 +/- 4. On the basis of these results the role of 17 beta-HSDH in forming active androgens and estrogens from less potent precursors is discussed in the stromal and epithelial compartment of the human prostate.  相似文献   

4.
In efforts to develop potent 5 alpha-reductase inhibitors without affinity for the androgen receptor, synthetic 3-oxo-5 alpha-steroids were tested for their ability to inhibit 5 alpha-reductase, using [14C]testosterone as the substrate, and for their ability to inhibit the binding of [3H]5 alpha-dihydrotestosterone to the androgen receptor of rat prostate cytosol. 2',3' alpha-Tetrahydrofuran-2'-spiro-17-(5 alpha-androstan-3-one) is not an inhibitor of 5 alpha-reductase and has a high affinity for the androgen receptor; substitution of the -CH2- at the 4-position with N-H resulted in a good inhibitor of 5 alpha-reductase. The 4-N-CH3 derivative is even more active, whereas the N-CH2-CH3 derivative is inactive. These 4-aza derivatives have much lower affinity for the androgen receptor than the parent compound. The 4-N-H derivatives of several 3-oxo-5 alpha-steroids were found to be 20-100% as potent as their corresponding 4-N-CH3 analogs as inhibitors of 5 alpha-reductase, whereas their androgen receptor affinities were at least 40-fold lower than their 4-N-CH3 analogs. Their 5 beta-isomers did not inhibit either 5 alpha-reductase or the androgen receptor binding of [3H]5 alpha-dihydrotestosterone. Two of these 4-N-H steroids, 17 beta-N,N-diethylcarbamoyl-4-aza-5 alpha-androstan-3-one and 17 beta-N, N-diisopropylcarbamoyl-4-aza-5 alpha-androstan-3-one, are potent 5 alpha-reductase inhibitors with Ki values equal to 29.2 +/- 1.7 and 12.6 +/- 0.8 nM, respectively, but have little affinity for the androgen receptor. The inhibition of 5 alpha-reductase by both compounds is competitive with testosterone. When [3H]testosterone was incubated with minced rat prostate in the presence of either of these two 4-azasteroids, the nuclear concentration of 5 alpha-dihydrotestosterone decreased and that of testosterone increased. The total nuclear uptake of testosterone plus 5 alpha-dihydrotestosterone was not significantly affected. These 4-azasteroids should be useful for investigating the importance of 5 alpha-reductase in androgen action in vivo.  相似文献   

5.
Estrogens and androgens are proposed to play a role in the pathogenesis of prostate cancer. The effective metabolites, estradiol and 5alpha-dihydrotestosterone are produced from testosterone by aromatase and 5alpha-reductase, respectively. Metabolites of vitamin D have shown to inhibit the growth of prostate cancer cells. The aim of the present study was to verify whether 25-hydroxyvitamin D(3) (25OHD(3)), 1alpha,25-dihydroxyvitamin D(3) [1alpha,25-(OH)(2)D(3)], dexamethasone, and progesterone regulate the expression of aromatase and 5alpha-reductase in human prostate cancer cells. LNCaP and PC3 cells were treated with 25OHD(3), 1alpha,25-(OH)(2)D(3), dexamethasone, or progesterone. Aromatase and 5alpha-reductase mRNA was quantified by real-time RT-PCR and aromatase enzyme activity was measured by the [(3)H] water assay. Aromatase enzyme activity in LNCaP and PC3 cells was increased by both 10nM dexamethasone, 1-100 nM 1alpha,25-(OH)(2)D(3) and 100 nM-10 microM progesterone. The induction was enhanced when hormones were used synergistically. Real-time RT-PCR analysis showed no regulation of the expression of aromatase mRNA by any steroids tested in either LNCaP or PC3 cells. The expression of 5alpha-reductase type I mRNA was not regulated by 1alpha,25-(OH)(2)D(3) and no expression of 5alpha-reductase type II was detected in LNCaP.  相似文献   

6.
The metabolism of 5 alpha-dihydrotestosterone by adult sheep blood was investigated. Erythrocytes contain 3 alpha- and 3 beta-hydroxysteroid dehydrogenase activities. The mean rate of reduction of 5 alpha-dihydrotestosterone by erythrocytes established in 15-min incubations was 0.66 +/- 0.36 (s.d.) mumol ml-1 erythrocytes h-1 and at equilibrium after a 60-min incubation, 90.6 +/- 5.1% of the substrate was reduced. The reduction of 5 alpha-dihydrotestosterone was shown to be dependent upon extracellular glucose and the intracellular cofactor NADPH. The proportion of the two reduction products was determined at equilibrium after separation by paper partition, chromatography and favoured 5 alpha-androstane-3 alpha, 17 beta-diol (96.0%) to 5 alpha-androstane-3 beta, 17 beta-diol (4.0%). The identities and proportions of the two products were confirmed by recrystallization procedures. The fact that erythrocytes can significantly metabolize the androgen 5 alpha-dihydrotestosterone is evidence for the recognition of blood as a major component of steroid endocrine homeostasis in sheep.  相似文献   

7.
This study examines the distribution of 5 alpha-reductase and 3 alpha(beta)-hydroxysteroid dehydrogenase activities throughout the intact hyperplastic prostate gland and relate these measurements to the fibromuscular/epithelial composition and to the gross glandular morphology. The relative capacities of the stroma and epithelium to metabolize testosterone and dihydrotestosterone were also examined. The results indicate that under optimum reaction conditions an uneven distribution of 5 alpha-reductase and 3 alpha(beta)-hydroxysteroid dehydrogenase could be measured across the prostate. These regional variations reflect true differences in metabolic activity and were independent of any morphological changes: caution is therefore advised when interpreting hormonal metabolic data obtained from single sampling of the gland. Our investigations also suggest that the capacity to metabolize testosterone was evenly distributed between stroma and epithelium and that both tissue components are primary sites for 5 alpha-reductase activity. The reductive 3 alpha(beta)-hydroxysteroid dehydrogenase was also found in both tissue types but the mean stromal activity was marginally higher than the levels measured in the epithelium.  相似文献   

8.
Connective tissue of the freshwater pulmonate Lymnaea stagnalis was shown to contain galactosyltransferase activity capable of transferring Gal from UDP-Gal in beta 1-3 linkage to terminal GalNAc of GalNAc beta 1-4GlcNAc-R [R = beta 1-2Man alpha 1-O(CH2)8COOMe, beta 1-OMe, or alpha,beta 1-OH]. Using GalNAc beta 1-4GlcNAc beta 1-2Man alpha-1-O(CH2)8COOMe as substrate, the enzyme showed an absolute requirement for Mn2+ with an optimum Mn2+ concentration between 12.5 mM and 25 mM. The divalent cations Mg2+, Ca2+, Ba2+ and Cd2+ at 12.5 mM could not substitute for Mn2+. The galactosyltransferase activity was independent of the concentration of Triton X-100, and no activation effect was found. The enzyme was active with GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe (Vmax 140 nmol.h-1.mg protein-1; Km 1.02 mM), GalNAc beta 1-4GlcNAc (Vmax 105 nmol.h-1.mg protein-1; Km 0.99 mM), and GalNAc beta 1-4GlcNAc beta 1-OMe (Vmax 108 nmol.h-1.mg protein-1; Km 1.33 mM). The products formed from GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe and GalNAc beta 1-4GlcNAc beta 1-OMe were purified by high performance liquid chromatography, and identified by 500-MHz 1H-NMR spectroscopy to be Gal beta 1-3GalNAc beta 1-4GlcNAc 1-OMe, respectively. The enzyme was inactive towards GlcNAc, GalNac beta 1-3 GalNAc alpha 1-OC6H5, GalNAc alpha 1--ovine-submaxillary-mucin, lactose and N-acetyllactosamine. This novel UDP-Gal:GalNAc beta 1-4GlcNAc-R beta 1-3-galactosyltransferase is believed to be involved in the biosynthesis of the hemocyanin glycans of L. stagnalis.  相似文献   

9.
Androgen receptors in crude and partially purified 105,000 X g supernatant fractions from rat testis, epididymis, and prostate were studied in vitro using a charcoal adsorption assay and sucrose gradient centrifugation. Androgen metabolism was eliminated during receptor purification allowing determination of the kinetics of [3H]-androgen-receptor complex formation. In all three tissues, receptors were found to have essentially identical capabilities to bind androgen, with the affinity for [3H] dihydrotestosterone being somewhat higher than for [3H] testosterone. Equilibrium dissociation constants for [3H] dihydrotestosterone and [3H] testosterone (KD = 2 to 5 X 10(-10) M) were estimated from independently determined rates of association (ka congruent to 6 X 10(7) M-1 h-1 for [3H] dihydrotestosterone and 2 X 10(8) M-1 h-1 for [3H] testosterone) and dissociation (t 1/2 congruent to 40 hr for [3H] dihydrotestosterone and 15 h [3H] testosterone). Evaluation of the effect of temperature on androgen receptor binding of [3H]testosterone allowed estimation of several thermodynamic parameters, including activation energies of association and dissociation (delta H congruent to 14 kcal/mol), the apparent free energy (delta G congruent to -12 kcal/mol), enthalpy (delta H congruent to -2.5 kcal/mol), and entropy (delta S congruent to 35 cal col-1 K-1). Optimum receptor binding occurred at a pH of 8. Receptor stability was greatly enhanced when bound with androgen. Receptor specificity for testosterone and dihydrotestosterone was demonstrated by competitive binding assays. The potent synthetic androgen, 7 alpha, 17 alpha-dimethyl-19-nortestosterone, inhibited binding of [3H] testosterone or [3H] dihydrotesterone nearly as well as testosterone and dihydrotestosterone while larger amounts of 5 alpha-androstane-3alpha, 17 beta-diol and nonandrogenic steroids were required. Sedimentation coefficients of androgen receptors in all unfractionated supernatants were 4 and 5 to 8 S. Differences in sedimentation coefficients were observed following (NH4)2SO4 precipitation which did not influence the binding properties of the receptors. These results, together with measurements of3alpha/beta-hydroxysteroid oxidoreductase activity in vitro, suggest that organ differences in receptor binding of [3H] dihydrotestosterone and [3H] testosterone in vivo result from relative differences in intracellular concentrations of these androgens rather than from differences in receptor affinities.  相似文献   

10.
Radiolabelled methyltrienolone, dihydrotestosterone and estradiol were used as ligands to identify and quantify androgen and estrogen receptors in freshly dispersed cells from the canine prostate. Soluble extracts (cytosols) were obtained from secretory and non-secretory epithelial cells separated on the basis of their density in Percoll gradients. For both cell types, as well as for the whole prostate, Scatchard plot analyses were linear and showed a single class of high affinity binding sites: Kd values of 3.6 +/- 2.2 X 10(-9) M and 3.0 +/- 1.2 X 10(-10) M were measured for the androgen and estrogen receptors, respectively. The number of binding sites for the cytosolic androgen receptor, expressed per mg of protein or per mg of DNA, was 2.4- to 6.7-fold higher in the non-secretory cells compared to the secretory cells. However, these two cell types contained a similar number of specific sites for the estrogens. The specificities of the androgen and estrogen receptors were shown to be identical for the two cell types: the binding of [3H]R1881 was strongly inhibited by unlabelled R1881, 5 alpha-androstane-3 alpha, 17 beta-diol and dihydrotestosterone, while 5 alpha-androstane-3 beta, 17 beta-diol, estradiol and estrone did not displace bound R1881. The addition of triamcinolone acetonide did not alter the binding of R1881 in extracts of either cell type or in the whole prostate. The binding of [3H]estradiol to the estrogen receptor was highly specific since a strong displacement was only observed with estradiol (83%).  相似文献   

11.
While androgen deprivation therapy (ADT) remains the primary treatment for metastatic prostate cancer (PCa), castration does not eliminate androgens from the prostate tumor microenvironment, and residual intratumoral androgens are implicated in nearly every mechanism by which androgen receptor (AR)-mediated signaling promotes castration-resistant disease. The uptake and intratumoral (intracrine) conversion of circulating adrenal androgens such as dehydroepiandrosterone sulfate (DHEA-S) to steroids capable of activating the wild type AR is a recognized driver of castration resistant prostate cancer (CRPC). However, less well-characterized adrenal steroids, including 11-deoxcorticosterone (DOC) and 11beta-hydroxyandrostenedione (11OH-AED) may also play a previously unrecognized role in promoting AR activation. In particular, recent data demonstrate that the 5α-reduced metabolites of DOC and 11OH-AED are activators of the wild type AR. Given the well-recognized presence of SRD5A activity in CRPC tissue, these observations suggest that in the low androgen environment of CRPC, alternative sources of 5α-reduced ligands may supplement AR activation normally mediated by the canonical 5α-reduced agonist, 5α-DHT. Herein we review the emerging data that suggests a role for these alternative steroids of adrenal origin in activating the AR, and discuss the enzymatic pathways and novel downstream metabolites mediating these effects. We conclude by discussing the potential implications of these findings for CRPC progression, particularly in context of new agents such as abiraterone and enzalutamide which target the AR-axis for prostate cancer therapy.  相似文献   

12.
Age dependent changes in androgen metabolism in the rat prostate   总被引:1,自引:0,他引:1  
Oxidation and reduction of androstenedione, testosterone, dihydrotestosterone (DHT), 5 alpha-androstan-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol (3 alpha- and 3 beta-A'diol) were measured in homogenates from the ventral prostate (VP), dorsal prostate (DP), lateral prostate (LP), the coagulating gland (CG) and seminal vesicles (SV) in intact rats of different ages from young mature (3-6 months) to senescent rats (20-30 months). Some very old intact rats (30-32 months) were treated with testosterone in order to rule out the effect of this hormone on androgen metabolism. The enzymatic activities for young mature rats were significantly altered by increasing age, both with regard to differences between the various organs as well as differences in cofactor requirement. With increasing age, the specific activity of most enzymes gradually decreased. With testosterone as substrate, 5 alpha-reductase activity was significantly reduced in the old rats in all tissues studied and was undetectable in the oldest animals in the VP and the SV. On the other hand, 5 alpha-reductase could not be recorded in any tissue in any tissue in old rats when androstenedione was the substrate. 3 alpha-Hydroxysteroid oxidoreductase (3 alpha-HSOR) in the VP was the only enzyme which did not decrease in activity by increasing age. In the other lobes this enzyme activity decreased similar to 3 beta-hydroxysteroid oxidoreductase (3 beta-HSOR) and the 17 beta-hydroxysteroid oxidoreductase (17 beta-HSOR) activity. Administration of testosterone to old rats increased the specific activity of most of the enzymes studied.  相似文献   

13.
The rat ventral prostate requires androgens for normal development, growth, and function. To investigate the relationship between androgen metabolism and its effects in the prostate and to examine differences between the epithelial and stromal cells, we have established a system of primary cell cultures of immature rat ventral prostate cells. Cultures of both cell types after reaching confluency (6-7 days) actively metabolized 3H-labelled testosterone (T), 5 alpha-dihydrotestosterone (5 alpha-DHT), 5 alpha-androstane-3 alpha,17 beta-diol, and 5 alpha-androstane-3 beta,17 beta-diol. The epithelial cells actively reduced T to 5 alpha-DHT and formed significant amounts of 5 alpha-androstane-3,17-dione from T, 5 alpha-DHT, and 5 alpha-androstane-3 alpha,17 beta-diol. All substrates were converted to significant amounts of C19O3 metabolites. The stromal cells also metabolized all substrates, but very little 5 alpha-androstane-3,17-dione was formed. The metabolism studies indicate that both cell types have delta 4-5 alpha-reductase, 3 alpha- and 3 beta-hydroxysteroid oxidoreductase and hydroxylase activities. The epithelial cells have significant 17 beta-hydroxysteroid oxidoreductase activity. The epithelial cells cultures grown in the presence of T have higher acid phosphatase (AP) contents (demonstrated histochemically and by biochemical assay). Tartrate inhibition studies indicate that the epithelial cells grown in the presence of T are making secretory AP. Stromal cell AP is not influenced by T. The results indicate that the cultured cells maintain differentiated prostatic functions: ability to metabolize androgens and, in the case of the epithelial cells, synthesize secretory AP.  相似文献   

14.
The enzyme 5 alpha-reductase (5 alpha R) catalyses the reduction of testosterone (T) into the more potent androgen dihydrotestosterone (DHT). The abnormal production of DHT is associated to pathologies of the main target organs of this hormone: the prostate and the skin. Benign prostatic hyperplasia (BPH), prostate cancer, acne, androgenetic alopecia in men, and hirsutism in women appear related to the DHT production. Two isozymes of 5 alpha-reductase have been cloned, expressed and characterized (5 alpha R-1 and 5 alpha R-2). They share a poor homology, have different chromosomal localization, enzyme kinetic parameters, and tissue expression patterns. Since 5 alpha R-1 and 5 alpha R-2 are differently distributed in the androgen target organs, a different involvement of the two isozymes in the pathogenesis of prostate and skin disorders can be hypothesized. High interest has been paid to the synthesis of inhibitors of 5 alpha-reductase for the treatment of DHT related pathologies, and the selective inhibition of any single isozyme represents a great challenge for medical and pharmaceutical research in order to have more specific drugs. At present, no 5 alpha R-1 inhibitor is marketed for the treatment of 5 alpha R-1 related pathologies but pharmaceutical research is very active in this field. This paper will review the major classes of 5 alpha R inhibitors focusing in particular on non-steroidal inhibitors and on structural features that enhance the selectivity versus the type 1 isozyme. Biological tests to assess the inhibitory activity towards the two 5 alpha R isozymes will be also discussed.  相似文献   

15.
Energy metabolism of cultured TM4 cells and the action of gossypol   总被引:1,自引:0,他引:1  
The energy metabolism of cultured TM4 cells, a cell line originally derived from mouse testicular cells, has been studied in relation to the action of gossypol. In the absence of externally added substrates, TM4 cells consumed oxygen at 37 +/- 5 nmoles O2 X mg protein-1 X h-1. Pyruvate stimulated oxygen consumption in a dose-dependent fashion up to 23%. Addition of glucose to the cells suspended in substrate-free medium inhibited oxygen consumption. At 5.5 mM glucose, the inhibition of oxygen consumption was 45 +/- 9%. The rate of aerobic lactate production from endogenous substrates was less than 7 nmoles lactate X mg protein-1 X h-1, even in the presence of optimal concentrations of the mitochondrial uncoupler carbonylcyanide m-chlorophenylhydrazone. The rate of aerobic lactate production was 920 +/- 197 nmoles X mg protein-1 X h-1 at external glucose concentrations of 2 mM or greater. The formation of aerobic glycolytic adenosine triphosphate (ATP) in 5 mM glucose comprised about 80% of the total ATP production. Gossypol stimulated both aerobic lactate production and oxygen consumption of the transformed testicular cells in a dose-dependent manner. The effect of gossypol on glucose transport, aerobic lactate production, and oxygen consumption is consistent with the hypothesis that gossypol modifies energy metabolism in these cells mainly by partially uncoupling mitochondrial oxidative phosphorylation. The possible impairment of cell and tissue function under gossypol treatment would depend on the metabolic properties of each specific differentiated cell.  相似文献   

16.
Abnormal differentiation in epithelial stem cells or their immediate proliferative progeny, the transiently amplifying population (TAP), may explain malignant pathogenesis in the human prostate. These models are of particular importance as differing sensitivities to androgen among epithelial cell subpopulations during differentiation are recognised and may account for progression to androgen independent prostate cancer. Androgens are crucial in driving terminal differentiation and their indirect effects via growth factors from adjacent androgen responsive stroma are becoming better characterised. However, direct effects of androgen on immature cells in the context of a prostate stem cell model have not been investigated in detail and are studied in this work. In alpha2beta1hi stem cell enriched basal cells, androgen analogue R1881 directly promoted differentiation by the induction of differentiation-specific markers CK18, androgen receptor (AR), PSA and PAP. Furthermore, treatment with androgen down-regulated alpha2beta1 integrin expression, which is implicated in the maintenance of the immature basal cell phenotype. The alpha2beta1hi cells were previously demonstrated to lack AR expression and the direct effects of androgen were confirmed by inhibition using the anti-androgen bicalutamide. AR protein expression in alpha2beta1hi cells became detectable when its degradation was repressed by the proteosomal inhibitor MG132. Stratifying the alpha2beta1hi cells into stem (CD133(+)) and transient amplifying population (TAP) (CD133(-)) subpopulations, AR mRNA expression was found to be restricted to the CD133(-) (TAP) cells. The presence of a functional AR in the TAP, an androgen independent subpopulation for survival, may have particular clinical significance in hormone resistant prostate cancer, where both the selection of immature cells and functioning AR regulated pathways are involved.  相似文献   

17.
Castration reduces prostate size and causes intraprostatic testosterone (T) and dihydrotestosterone (DHT) to fall to very low levels. 5 alpha-Reductase inhibition also reduces prostate size, but results in a marked increase in intraprostatic T levels. To compare the effects of 5 alpha-reductase inhibition and castration on prostate physiology, male Sprague-Dawley rats were left intact, castrated, or given the selective 5 alpha-reductase inhibitor finasteride for up to 9 days. To be sure that finasteride itself did not directly affect gene expression, an additional group of rats was castrated and given finasteride for 4 days. The prostates were weighed, intraprostatic RNA, DNA, and androgen levels were measured, and mRNAs for two androgen-regulated genes, prostate steroid-binding protein (PSBP; an androgen-induced gene) and testosterone-repressed prostate message (TRPM-2), were quantitated by Northern and slot blot analyses. Finasteride caused a 95% reduction in intraprostatic DHT levels and a 10-fold increase in intraprostatic T levels. Finasteride, as expected, caused a pronounced decrease in prostate weight (45% on day 4). DNA content fell correspondingly (48% on day 4). Intraprostatic DNA (micrograms of DNA per gland) on day 4 was 328 +/- 53 in control rats, 171 +/- 10 in finasteride-treated rats (P less than 0.001 compared to controls), 115 +/- 2 in castrated rats (P less than 0.05 compared to finasteride), and 107 +/- 43 in finasteride-treated plus castrated rats (P = NS compared to castration alone). There were no significant differences in DNA levels among the groups when expressed per mg prostate tissue, indicating that mean prostate cell size was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
25-Hydroxyvitamin D3-24-hydroxylase (24-hydroxylase, CYP24) is an important inactivating enzyme controlling the concentrations of both active metabolites 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3. In this paper, we demonstrate that 25-hydroxyvitamin D3 at 500 nM significantly increases the expression of 24-hydroxylase mRNA and the increase is significantly decreased by 5alpha-dihydrotestosterone (DHT) at concentrations of 1-100 nM in androgen-sensitive prostate cancer cells LNCaP. 25-Hydroxyvitamin D3 at 500 nM and 1alpha,25-dihydroxyvitamin D3 at 10 nM inhibit LNCaP cell growth, and the growth inhibition is enhanced by 1 nM DHT. Neither 25-hydroxyvitamin D3 nor 1alpha,25-dihydroxyvitamin D3 at physiological concentrations has growth effect. However, in the presence of 1 nM DHT, both 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3 at physiological concentrations are clearly antiproliferative. These data demonstrate that DHT enhances the antiproliferative activity of Vitamin D3 hormones by inhibiting their inactivating enzyme. Most previous studies on Vitamin D3 action in cell cultures have used pharmacological concentrations of 1alpha,25-dihydroxyvitamin D3, the present results demonstrate, for the first time, that both 25-hydroxyvitamin D3 and 1alpha,25-dihydroxyvitamin D3 at physiological concentrations are active in the presence of physiological concentration of androgen. The combined use of androgen and Vitamin D3 metabolites could be a promising treatment for prostate cancer.  相似文献   

19.
Bovine cerebral cortex contains two major substrates for ADP-ribosylation by pertussis toxin: a 39-kDa protein, alpha 39, and a 41-kDa protein, alpha 41 (Neer, E. J., Lok, J. M., and Wolf, L. G. (1984) J. Biol. Chem. 259, 14222-14229). Both of these proteins bind guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) with a similar affinity (Kd = 30 +/- 10 nM for alpha 39, Kd = 32 +/- 14 nM for alpha 41). Both proteins associate with a beta X gamma subunit made up of a 36-kDa beta component and a 6-kDa gamma component. We have previously shown that the beta X gamma unit is required for pertussis toxin-catalyzed ADP-ribosylation (Neer et al. (1984)). By measuring the amount of beta X gamma required for maximal incorporation of ADP-ribose, we now find that the EC50 for beta X gamma in this reaction is 3 +/- 1 times lower for alpha 41 than for alpha 39. ADP-ribosylation by pertussis toxin does not prevent dissociation of alpha 41 X beta X gamma or alpha 39 X beta X gamma by GTP gamma S. GTP gamma S decreases the sedimentation coefficient of ADP-ribosylated alpha 41 from 4.2 S to 3.0 S and the sedimentation coefficient of ADP-ribosylated alpha 39 from 4.3 S to 2.9 S. The conclusion that GTP gamma S dissociates both ADP-ribosylated heterotrimers was confirmed by the observation that GTP gamma S blocks precipitation of ADP-ribosylated alpha 39 or alpha 41 by anti-beta antibody. Neither alpha 41 X beta X gamma nor alpha 39 X beta X gamma is dissociated by GTP whether or not the proteins are ADP-ribosylated. The observation that alpha 41 more readily associates with beta X gamma than does alpha 39 may explain our earlier observation that alpha 41 is more readily ADP-ribosylated than alpha 39. In most intact membranes, only a 41-kDa ADP-ribosylated protein is seen. However, alpha 39 is also present in most tissues since we can detect it with anti-alpha 39 antibody. The functional consequences of pertussis toxin treatment may depend on whether one or both proteins are ADP-ribosylated. This in turn may depend on the ratio of alpha 41 and alpha 39 to beta X gamma in a given tissue.  相似文献   

20.
The interaction of norethisterone (NET) and four A-ring reduced metabolites of NET with cytosol receptors for progesterone (PR), androgen (AR), and estrogen (ER) was investigated. Cytosol preparations from: uteri of adult estrogen-primed castrated rats, ventral prostates of adult castrated rats and uteri of immature rats were used as the source of PR, AR, and ER respectively. 3H-Labeled ORG-2058, R-1881, and 17 beta-estradiol were used as the radioligands. The results of competitive studies disclosed that: the most efficient competitor for PR binding sites was NET (Ki = 1.1 X 10(-7) M) followed by 5 alpha-dihydro NET (5 alpha-NET), whereas the 3 alpha,5 alpha; 3 beta,5 alpha and 3 alpha,5 beta-tetrahydro NET derivatives were ineffective the most efficient competitor for AR binding sites was 5 alpha-NET (Ki = 1 X 10(-8), immediately followed by NET, while the three tetrahydro NET derivatives were not competitors and remarkable competition for ER binding sites was only exhibited by the 3 beta,5 alpha-tetrahydro NET derivative (Ki = 4.6 X 10(-8) M) and to a lesser extent by its 3 alpha,5 alpha-epimeric alcohol, while NET and 5 alpha-NET were completely ineffective. These findings demonstrate the stereospecificity of the intracellular binding of NET and its reduced metabolites with cytosol steroid putative receptors, and provide biochemical support to the understanding of the variety of hormone-like effects observed after the in vivo administration of NET.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号