首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GIPC is a PDZ protein located on peripheral endosomes that binds to the juxtamembrane region of the TrkA nerve growth factor (NGF) receptor and has been implicated in NGF signaling. We establish here that endogenous GIPC binds to the C terminus of APPL, a Rab5 binding protein, which is a marker for signaling endosomes. When PC12(615) cells are treated with either NGF or antibody agonists to activate TrkA, GIPC and APPL translocate from the cytoplasm and bind to incoming, endocytic vesicles carrying TrkA concentrated at the tips of the cell processes. GIPC, but not APPL, dissociates from these peripheral endosomes prior to or during their trafficking from the cell periphery to the juxtanuclear region, where they acquire EEA1. GIPC's interaction with APPL is essential for recruitment of GIPC to peripheral endosomes and for TrkA signaling, because a GIPC PDZ domain mutant that cannot bind APPL or APPL knockdown with small interfering RNA inhibits NGF-induced GIPC recruitment, mitogen-activated protein kinase activation, and neurite outgrowth. GIPC is also required for efficient endocytosis and trafficking of TrkA because depletion of GIPC slows down endocytosis and trafficking of TrkA and APPL to the early EEA1 endosomes in the juxtanuclear region. We conclude that GIPC, following its recruitment to TrkA by APPL, plays a key role in TrkA trafficking and signaling from endosomes.  相似文献   

2.
β-amyloid precursor protein (APP) is a key factor in Alzheimer''s disease (AD) but its physiological function is largely undetermined. APP has been found to regulate retrograde transport of nerve growth factor (NGF), which plays a crucial role in mediating neuronal survival and differentiation. Herein, we reveal the mechanism underlying APP-mediated NGF trafficking, by demonstrating a direct interaction between APP and the two NGF receptors, TrkA and p75NTR. Downregulation of APP leads to reduced cell surface levels of TrkA/p75NTR and increased endocytosis of TrkA/p75NTR and NGF. In addition, APP-deficient cells manifest defects in neurite outgrowth and are more susceptible to Aβ-induced neuronal death at physiological levels of NGF. However, APP-deficient cells show better responses to NGF-stimulated differentiation and survival than control cells. This may be attributed to increased receptor endocytosis and enhanced activation of Akt and MAPK upon NGF stimulation in APP-deficient cells. Together, our results suggest that APP mediates endocytosis of NGF receptors through direct interaction, thereby regulating endocytosis of NGF and NGF-induced downstream signaling pathways for neuronal survival and differentiation.  相似文献   

3.
We investigated the effects of the cellular redox state on nerve growth factor (NGF)-induced neuronal differentiation and its signaling pathways. Treatment of PC12 cells with buthionine sulfoximine (BSO) reduced the levels of GSH, a major cellular reductant, and enhanced NGF-induced neuronal differentiation, activation of AP-1 and the NGF receptor tyrosine kinase, TrkA. Conversely, incubation of the cells with a reductant, N-acetyl-L-cysteine (NAC), inhibited NGF-induced neuronal differentiation and AP-1 activation. Consistent with the suppression, NAC inhibited NGF-induced activation of TrkA, formation of receptor complexes comprising TrkA, Shc, Grb2, and Sos, and activation of phospholipase Cgamma and phosphatidylinositol 3-kinase. Biochemical analysis suggested that the cellular redox state regulates TrkA activity through modulation of protein tyrosine phosphatases (PTPs). Thus, cellular redox state regulates signaling pathway of NGF through PTPs, and then modulates neuronal differentiation.  相似文献   

4.
A long-standing question in neurotrophin signal transduction is whether heteromeric TrkA-p75NTR complexes possess signaling capabilities that are significantly different from homo-oligomeric TrkA or p75NTR alone. To address this issue, various combinations of transfected PC12 cells expressing a platelet-derived growth factor receptor-TrkA chimera and the p75NTR-selective nerve growth factor mutant (Delta9/13 NGF) were utilized to selectively stimulate TrkA or p75NTR signaling, respectively. The contribution of individual and combined receptor effects was analyzed in terms of downstream signaling and certain end points. The results suggest two unique functions for the high affinity heteromeric NGF receptor site: (a) integration of both the MAPK and Akt pathways in the production of NGF-induced neurite outgrowth, and (b) rapid and sustained activation of the Akt pathway, with consequent long term cellular survival. Whereas activation of TrkA signaling is sufficient for eliciting neurite outgrowth in PC12 cells, signaling through p75NTR plays a modulatory role, especially in the increased formation of fine, synaptic "bouton-like" structures, in which both TrkA and p75NTR appear to co-localize. In addition, a new interaction in the TrkA/p75NTR heteromeric receptor signal transduction network was revealed, namely that NGF-induced activation of the MAPK pathway appears to inhibit the parallel NGF-induced Akt pathway.  相似文献   

5.
6.
We have previously shown that nerve growth factor (NGF)-induced activation of nuclear factor-kappaB increased neuronal expression of Bcl-xL, an anti-apoptotic Bcl-2 family protein. In the present study we determined the role of the p75 neurotrophin receptor in constitutive and NGF-induced survival signalling. Treatment of rat pheochromocytoma (PC12) cells with a blocking anti-rat p75 antibody or inhibition of p75 expression by antisense oligonucleotides reduced constitutive and NGF-induced bcl-xL expression. Treatment with the blocking anti-p75 antibody also inhibited NGF-induced activation of the survival kinase Akt. Inhibition of phosphatidylinositol-3-kinase (PI3 kinase) activity or overexpression of a dominant-negative mutant of Akt kinase inhibited NGF-induced nuclear factor-kappaB activation. Activation of Akt kinase by NGF was also observed in PC12nnr5 cells and cultured rat hippocampal neurones which both lack significant TrkA expression. Treatment of hippocampal neurones with the blocking anti-p75 antibody inhibited constitutive and NGF-induced Bcl-xL expression, activation of Akt, and blocked the protective effect of NGF against excitotoxic and apoptotic injury. Our data suggest that the p75 neurotrophin receptor mediates constitutive and NGF-induced survival signalling in PC12 cells and hippocampal neurones, and that these effects are mediated via the PI3-kinase pathway.  相似文献   

7.
In PC12 rat pheochromocytoma cells, nerve growth factor (NGF)-induced neuronal differentiation is blocked by constitutively active dominant mutants of RhoA but augmented by negative ones, suggesting a not yet elucidated inhibitory signaling link between NGF receptors and RhoA. Here we show that NGF treatment rapidly translocates RhoA from the plasma membrane to the cytosol and simultaneously decreases RhoA affinity to its target Rho-associated kinase (ROK), a key mediator of neurite outgrowth. This effect was transient, because after 2 days of NGF treatment, RhoA relocated from the cytosol to the plasma membrane, and its GTP loading returned to a level found in undifferentiated cells. Inhibition of RhoA is mediated by activation of the TrkA receptor, because NGF failed to induce RhoA translocation and inhibition of ROK binding in nnr5 cells that lack TrkA, whereas the inhibition was reconstituted in receptor add-back B5 cells. In MM17-26 cells, which due to expression of dominant negative Ras do not differentiate, NGF-stimulated transient RhoA inhibition was unaffected. The inhibitory pathway from TrkA to RhoA involves phosphatidylinositol-3-kinase (PI3K), because the inhibitors LY294002 or wortmannin prevented NGF-induced RhoA translocation and increased RhoA association with ROK. Furthermore, inhibition of PI3K significantly reduced NGF- mediated Rac1 activation, whereas dominant negative Rac1 abolished the inhibitory signaling to RhoA. Taken together, these data indicate that NGF-mediated activation of TrkA receptor stimulates PI3K, which in turn increases Rac1 activity to induce transient RhoA inactivation during the initial phase of neurite outgrowth.  相似文献   

8.
Song EJ  Yoo YS 《BMB reports》2011,44(3):182-186
Exogenous stimuli such as nerve growth factor (NGF) exert their effects on neurite outgrowth via Trk neurotrophin receptors. TrkA receptors are known to be ubiquitinated via proteasome inhibition in the presence of NGF. However, the effect of proteasome inhibition on neurite outgrowth has not been studied extensively. To clarify these issues, we investigated signaling events in PC12 cells treated with NGF and the proteasome inhibitor MG132. We found that MG132 facilitated NGF-induced neurite outgrowth and potentiated the phosphorylation of the extracellular signal-regulated kinase/mitogen- activated protein kinase (ERK/MAPK) and phosphatidylinositol- 3-kinase (PI3K)/AKT pathways and TrkA receptors. MG132 stimulated internalization of surface TrkA receptor and stabilized intracellular TrkA receptor, and the Ub(K63) chain was found to be essential for stability. These results indicate that the ubiquitin-proteasome system potentiated neurite formation by regulating the stability of TrkA receptors.  相似文献   

9.
The human neuroblastoma cell line SH-SY5Y/TrkA differentiates in vitro and acquires a sympathetic phenotype in response to phorbolester (activator of protein kinase C, PKC) in the presence of serum or growth factors, or nerve growth factor (NGF). We have now investigated to what extent phorbolester and NGF cause activation of Ras and Raf-1 and the involvement of PKC in this response in differentiating SH-SY5Y/TrkA cells. NGF stimulated increased accumulation of Ras-GTP and a threefold activation of Raf-1. In contrast, 12-O-tetradecanoylphorbol-13-acetate (TPA) had no effect on the amount of Ras-GTP but led to a smaller activation of Raf-1. NGF caused a limited increase in phosphorylation of Raf-1 compared with TPA, and NGF-induced Raf activity was independent of PKC. Analysis of phosphorylation of the endogenous PKC substrate myristoylated alanine-rich C-kinase substrate (MARCKS), and of subcellular distribution of PKC-alpha, -delta, and -epsilon revealed that NGF only caused a very small activation of PKC in SH-SY5Y/TrkA cells. The results identify Raf-1 as a target for both TPA- and NGF-induced signals in differentiating SH-SY5Y/TrkA cells and demonstrate that signalling to Raf-1 was mediated via distinct mechanisms.  相似文献   

10.
SH2-B is required for nerve growth factor-induced neuronal differentiation   总被引:15,自引:0,他引:15  
Nerve growth factor (NGF) is essential for the development and survival of sympathetic and sensory neurons. NGF binds to TrkA, activates the intrinsic kinase activity of TrkA, and promotes the differentiation of pheochromocytoma (PC12) cells into sympathetic-like neurons. Several signaling molecules and pathways are known to be activated by NGF, including phospholipase Cgamma, phosphatidylinositol-3 kinase, and the mitogen-activated protein kinase cascade. However, the mechanism of NGF-induced neuronal differentiation remains unclear. In this study, we examined whether SH2-Bbeta, a recently identified pleckstrin homology and SH2 domain-containing signaling protein, is a critical signaling protein for NGF. TrkA bound to glutathione S-transferase fusion proteins containing SH2-Bbeta, and NGF stimulation dramatically increased that binding. In contrast, NGF was unable to stimulate the association of TrkA with a glutathione S-transferase fusion protein containing a mutant SH2-Bbeta(R555E) with a defective SH2 domain. When overexpressed in PC12 cells, SH2-Bbeta co-immunoprecipitated with TrkA in response to NGF. NGF stimulated tyrosyl phosphorylation of endogenous SH2-Bbeta as well as exogenously expressed GFP-SH2-Bbeta but not GFP-SH2-Bbeta(R555E). Overexpression of SH2-Bbeta(R555E) blocked NGF-induced neurite outgrowth of PC12 cells, whereas overexpression of wild type SH2-Bbeta enhanced NGF-induced neurite outgrowth. Overexpression of either wild type or mutant SH2-Bbeta(R555E) did not alter tyrosyl phosphorylation of TrkA, Shc, or phospholipase Cgamma in response to NGF or NGF-induced activation of ERK1/2, suggesting that SH2-Bbeta may initiate a previously unknown pathway(s) that is essential for NGF-induced neurite outgrowth. Taken together, these data indicate that SH2-Bbeta is a novel signaling molecule required for NGF-induced neuronal differentiation.  相似文献   

11.
12.
A chimera of the nerve growth factor (NGF) receptor, TrkA, and green fluorescent protein (GFP) was engineered by expressing GFP in phase with the carboxyl terminus of TrkA. TrkA-GFP becomes phosphorylated on tyrosine residues in response to NGF and is capable of initiating signaling cascades leading to prolonged MAPK activation and differentiation in PC12 nnr5 cells. TrkA constructs, progressively truncated in the carboxyl-terminal domain, were prepared as GFP chimerae in order to identify which part of the receptor intracellular domain is involved in its trafficking. Immunofluorescence observations show that TrkA-GFP is found mainly in cell surface membrane ruffles and in endosomes. Biochemical analysis indicated that the cytoplasmic domain of TrkA is not necessary for correct maturation and cell surface translocation of the receptor. An antibody against the extracellular domain of TrkA (RTA) was used as ligand to stimulate internalization and phosphorylation of TrkA. Co-localization studies with anti-phosphorylated TrkA antibodies support a role for such complexes in the propagation of signaling from the cell surface, resulting in the activation of TrkA in areas of the endosome devoid of receptor-ligand complexes. Confocal time-lapse analysis reveals that the TrkA-GFP chimera shows highly dynamic trafficking between the cell surface and internal locations. TrkA-positive vesicles were estimated to move 0.46 +/- 0.09 microm/s anterograde and 0.48 +/- 0.07 microm/s retrograde. This approach and the fidelity of the biochemical properties of the TrkA-GFP demonstrate that real-time visualization of trafficking of tyrosine kinase receptors in the presence or absence of the ligand is feasible.  相似文献   

13.
NGF may play a role in airway inflammation and hyperresponsiveness. We studied its possible involvement in airway remodelling and report here its proliferative effect and its receptor and signalling pathways in human airway smooth muscle cells in culture (HASMC). Proliferation of HASMC induced by NGF (0.1-10 pM) was assessed by the XTT and BrdU techniques with and without kinase inhibitors. Immunoprecipitation and Western blotting were used to study phosphorylation of TrkA and MAPK. NGF caused dose-dependent proliferation of HASMC and induced TrkA phosphorylation, both abolished by the tyrosine-kinase inhibitor K252a. PI3K and JNK inhibitors had no effect. PKC inhibitors partially inhibited NGF-induced proliferation and totally abolished p38 phosphorylation but did not affect ERK1/2 phosphorylation. The rafK inhibitor decreased NGF-induced proliferation, and totally abolished ERK1/2 phosphorylation, but did not affect p38 phosphorylation. This finding was confirmed by the decrease of NGF-induced proliferation after treatment with inhibitors of the p38 or of ERK1/2 pathways. In conclusion, NGF activation of the TrkA receptor involves two distinct signalling pathways: PKC selectively activates p38, and the ras/raf pathway selectively activates ERK1/2. Both are necessary to induce HASMC proliferation.  相似文献   

14.
Rap1 transduces nerve growth factor (NGF)/tyrosine receptor kinase A (TrkA) signaling in early endosomes, leading to sustained activation of the p44/p42 mitogen-activated protein kinases (MAPK1/2). However, the mechanisms by which NGF, TrkA and Rap1 are trafficked to early endosomes are poorly defined. We investigated trafficking and signaling of NGF, TrkA and Rap1 in PC12 cells and in cultured rat dorsal root ganglion (DRG) neurons. Herein, we show a role for both microtubule- and dynein-based transport in NGF signaling through MAPK1/2. NGF treatment resulted in trafficking of NGF, TrkA and Rap1 to early endosomes in the perinuclear region of PC12 cells where sustained activation of MAPK1/2 was observed. Disruption of microtubules with nocodazole in PC12 cells had no effect on the activation of TrkA and Ras. However, it disrupted intracellular trafficking of TrkA and Rap1. Moreover, NGF-induced activation of Rap1 and sustained activation of MAPK1/2 were markedly suppressed. Inhibition of dynein activity through overexpression of dynamitin (p50) blocked trafficking of Rap1 and the sustained phase of MAPK1/2 activation in PC12 cells. Remarkably, even in the continued presence of NGF, mature DRG neurons that overexpressed p50 became atrophic and most (>80%) developing DRG neurons died. Dynein- and microtubule-based transport is thus necessary for TrkA signaling to Rap1 and MAPK1/2.  相似文献   

15.
Caveolin and caveolin containing rafts are involved in the signaling of growth factors in various cell types. Previous reports of our lab indicated a co-localization of caveolin and the high affinity nerve growth factor (NGF) receptor tyrosine kinase A (TrkA). Mutual effects have been observed among which a caveolin-1 knock-down resulted in an impairment of the NGF signaling cascade rather than in an increase of activity as expected from other growth factor reports. On the other hand, an over-expression of caveolin-1 impaired the NGF stimulated activity of p42/44 mitogen activated protein kinases (MAPK). In this study, we used a caveolin-1 scaffolding domain (CSD) peptide (cavtratin) of which an inhibitory effect on growth factor receptors was reported. Our data showed that cavtratin suppresses the NGF-induced phosphorylation of TrkA as well as the activation of MAPK in porcine oligodendrocytes significantly.  相似文献   

16.
NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-gamma1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.  相似文献   

17.
18.
Nerve growth factor (NGF) promotes the survival, maintenance, and neurite outgrowth of sensory and sympathetic neurons, and the effects are mediated by TrkA receptor signaling. Thus, the cell surface location of the TrkA receptor is crucial for NGF-mediated functions. However, the regulatory mechanism underlying TrkA cell surface levels remains incompletely understood. In this study, we identified syntaxin 8 (STX8), a Q-SNARE protein, as a novel TrkA-binding protein. Overexpression and knockdown studies showed that STX8 facilitates TrkA transport from the Golgi to the plasma membrane and regulates the surface levels of TrkA but not TrkB receptors. Furthermore, STX8 modulates downstream NGF-induced TrkA signaling and, consequently, the survival of NGF-dependent dorsal root ganglia neurons. Finally, knockdown of STX8 in rat dorsal root ganglia by recombinant adeno-associated virus serotype 6-mediated RNA interference led to analgesic effects on formalin-induced inflammatory pain. These findings demonstrate that STX8 is a modulator of TrkA cell surface levels and biological functions.  相似文献   

19.
Here we investigated a biological association of constitutively active Src with TrkA in SK-N-MC human neuroblastoma cells. Activation of TrkA and extracellular signal-regulated kinase (ERK) by nerve growth factor (NGF) was inhibited by pretreatment with PP2, an inhibitor of Src family kinases. Moreover, NGF-induced phosphorylation of TrkA and ERK was also attenuated by the transfection with a dominant-negative src construct. On the other hand, the transfection with a constitutively active src construct enhanced these phosphorylations. In addition, we showed that active Src phosphorylates TrkA directly in vitro, and that Src associates with TrkA through Grb2 after NGF stimulation. These results suggest that constitutively active Src that associates with TrkA through Grb2 after NGF stimulation participates in TrkA phosphorylation and in turn enhances the mitogen-activated protein kinase signaling in SK-N-MC cells.  相似文献   

20.
Nerve growth factor (NGF) induces neurite outgrowth and differentiation in a process that involves NGF binding to its receptor TrkA and endocytosis of the NGF-TrkA complex into signaling endosomes. Here, we find that biogenesis of signaling endosomes requires inactivation of Rab5 to block early endosome fusion. Expression of dominant-negative Rab5 mutants enhanced NGF-mediated neurite outgrowth, whereas a constitutively active Rab5 mutant or Rabex-5 inhibited this process. Consistently, inactivation of Rab5 sustained TrkA activation on the endosomes. Furthermore, NGF treatment rapidly decreased cellular level of active Rab5-GTP, as shown by pull-down assays. This Rab5 down-regulation was mediated by RabGAP5, which was shown to associate with TrkA by coimmunoprecipitation assays. Importantly, RNA interference of RabGAP5 as well as a RabGAP5 truncation mutant containing the TrkA-binding domain blocked NGF-mediated neurite outgrowth, indicating a requirement for RabGAP5 in this process. Thus, NGF signaling down-regulates Rab5 activity via RabGAP5 to facilitate neurite outgrowth and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号