首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fiber (in terms of plant biology) is an individual cells characterized by spindle shape, length of up to several centimeters, well developed cell wall, and mechanical function. The review summarizes different, sometimes contradictory view points about duration, segregation and mechanisms of realization of individual stages of fiber biogenesis. Initiation and coordinated and intrusive growth are considered, as well as formation of secondary cell wall, including its gelatinous layers, and senescence. Biogenesis of fibers ontogenetically related to various tissues has been analyzed and the data about marker stage-specific characters of these cells. The data summarized in this review willow not only deeper understanding the development of cells with such unique characters, but also interpret the growth mechanisms for much more cell types, in which it is more difficult to identify individual stages of biogenesis than in the sclerenchyme fibers.  相似文献   

2.
To compare modeling with experimental data of cell growth surrounding individual fibers, the growth profiles of hybridoma cells in the extracapillary space of single hollow fiber bioreactors were examined. Agarose was provided in the extracapillary space to provide support and minimize convection. By sacrificing bioreactors at various time intervals, the growth profiles of cells surrounding a single hollow fiber could be monitored with increasing time. Using photomicroscopy and viable staining, areas of viable and nonviable cell growth were examined at various stages of development ranging from initial seeding to stable growth conditions. Cells were found to act as nucleation sites for the growth of individual colonies within the agarose. Profiles at stable growth conditions resulted in a thick cell mass near the surface of the fiber wall followed by cell colonies of decreasing size with increasing radial distance. A simplified theoretical model for cell growth was developed using mass balance equations for substrate penetration into individual cell colonies as well as away from the wall of a single fiber. The resulting profiles derived from theory were compared with experiments and found to be in good agreement for entering oxygen concentrations of 5% and 20%. (c) 1992 John Wiley & Sons, Inc.  相似文献   

3.
Plant fibers are one of the most important renewable resources, used as raw material in the paper industry, and for various textiles and for composites. Fibers are structural components in timber and an energy-rich component of fuel-wood. For the plant itself, fibers are important in establishing plant architecture, as a source of mechanical support, in defence from herbivory, and in some cases as elements with contractile properties, resembling those of muscles. In addition, fibers may store ergastic carbon resources and water. Here, we review various aspects of fiber development such as initiation, elongation, cell wall formation and multinuclearity, discuss open questions and propose directions for further research. Most of the recent progress in fiber formation biology, especially in cell wall structure and chemistry, emerged from studies of only a few model plants including flax, Populus spp., Eucalyptus spp., Arabidopsis thaliana and hemp. Considering the enormous importance of fibers to humanity, it is surprising how little is known about the biology of fiber formation.  相似文献   

4.
Cell elongation and secondary wall deposition are two consecutive stages during cotton fiber development. The mechanisms controlling the progression of these two developmental phases remain largely unknown. Here,we report the functional characterization of the actin-bundling protein GhFIM2 in cotton fiber. Overexpression of GhFIM2 increased the abundance of actin bundles,which was accompanied with accelerated fiber growth at the fastelongating stage. Meanwhile,overexpression of GhFIM2 could propel the onset of secondary cell wall biogenesis. These results indicate that the dynamic rearrangement of actin higher structures involving GhFIM2 plays an important role in the development of cotton fiber cells.  相似文献   

5.
Summary The growth of submerged cotton (Gossypium hirsutum L.) fibers from cultured ovules has been investigated. The results indicate that exogenous plant hormone levels regulate the induction of submerged fiber growth. The age of ovules at induction is also important. Cell diameter, wall thickness, and cell length of submerged fibers were measured and compared with air-grown fibers and fibers grown in vivo (produced by cotton plants grown in the greenhouse). Various cellwall thickening patterns were observed among submerged fibers, while only one predominant cell-wall deposition pattern was produced in air-grown fibers and in fibers produced in vivo. The diameter of submerged fibers was about the same as that of air-grown fibers but about 22% less than that of fibers grown, in vivo. It appears that the secondary cell wall thickenings are initiated earlier in submerged fibers. The cell-wall thickness of submerged fibers, at 41 d post anthesis (DPA), was 51% greater than that of fibers grown in vivo, whereas the cell-wall thickness of air-grown fibers was 42% less than that of fibers produced in vivo. The cell length of submerged fibers was approximately half that of fibers grown in vivo. and the air-grown fiber length was about two-thirds of fibers grown in vivo. The age of ovules at induction affects the outcome of the air-grown fiber-cell length, but does not appear to affect the length of submerged fiber cells. To produce submerged fiber growth, we found that the optimal age of ovules at induction was 0 DPA, and the optimal medium (with a GA3 of 0.5 μM and an IAA range of 5-20 μM) depends on the time of ovule induction (−2 to+2DPA). We conclude that conditions leading to submerged cotton fiber growth have great potential for (a) direct monitoring of growth and making precise, detailed measurements during fiber growth and development; (b) producing cellulose and fibers in vitro more efficiently than earlier ovule-culture methods; and (c) using these unique cultures to obtain a better understanding of signal transduction and gene expression leading to growth, development, and programmed cell death in the life history of the cotton fiber.  相似文献   

6.
Intrusive growth is a type of cell elongation when the rate of its longitudinal growth is higher than that of surrounding cells; therefore, these cells intrude between the neighboring cells penetrating the middle lamella. The review considers the classical example of intrusive growth, e.g., elongation of sclerenchyma fibers when the cells achieve the length of several centimeters. We sum the published results of investigations of plant fiber intrusive growth and present some features of intrusive growth characterized by the authors for flax (Linum usitatissimum L.) and hemp (Cannabis sativa L.) fibers. The following characteristics of intrusive growth are considered: its rate and duration, relationship with the growth rate of surrounding cells, the type of cell elongation, peculiarities of the fiber primary cell wall structure, fibers as multinucleate cells, and also the control of intrusive growth. Genes, which expression is sharply reduced at suppression of intrusive growth, are also considered. Arguments for separation of cell elongation and secondary cell wall formation in phloem fibers and also data indicating diffuse type of cell enlargement during intrusive growth are presented.  相似文献   

7.
8.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

9.
The effects of soil drought on various stages of phloem fiber development during the period of flax (Linum usitatissimum L.) rapid growth were assessed. The formation of the secondary cell wall was shown to be most retarded. The content of a tissue-specific galactan was reduced especially sharply, and its side chains were changed. Under conditions of pronounced stress-induced plant growth retardation, fiber intrusive growth was suppressed relatively softly: their number on the stem transverse sections was reduced only by 16%. However, this determined irreversible diversity in the fiber length in various stem regions. Such insignificant suppression of intrusive growth under osmotic stress (simultaneously with substantial retardation of plant growth and metabolism inhibition) indicates the functioning of special mechanisms of its regulation.  相似文献   

10.
Intrusively growing plant cells insert themselves between surrounding cells, thus increasing the number of membranes on the tissue cross-section. This parameter can be assessed by spin echo NMR method with a magnetic field pulse gradient. Diffusion echo decay was measured for stem regions of long-fiber flax (Linum usitatissimum L.) differing in the stages of primary fiber development, which elongate thousand-fold during intrusive growth. Additionally, the number of fibers on stem cross-sections was counted under microscope. An increase in the slow component of the echo diffusion decay was correlated with an increase in the number of fibers on the stem cross-section in the zone of intrusive growth, while other stem-structure characteristics remained unchanged. Thus, NMR method can be used for characterization of intrusive fiber growth in situ.  相似文献   

11.
Composition and content of free monosaccharides and β-galactosidase activity were determined in the course of development of the flax (Linum usitatissimum L.) tissues containing bast fibers. In the stem regions where the fibers were at the stage of formation of the secondary cell wall of gelatinous type, the content of free galactose was high (14 mM) and 13–20 times greater than in the upper part of the stem where the fibers were at the stage of intrusive growth. Pulse-chase experiments demonstrated the differences in the metabolism of individual low-molecular sugars. In respect to glucose and sucrose, all the examined characteristics (content, absolute and specific radioactivity, and the temporal changes of these indices) were identical in the stem regions wherein the fibers were at different stages of development. Labeled galactose was detected only in the stem regions where the fibers were at the stage of secondary cell wall formation. The specific radioactivity of glucose and sucrose reached the maximum immediately after photosynthesis in the presence of 14CO2 and changed in the same way as in the primary products of photosynthesis. The time-course of label incorporation into galactose indicated that this monosaccharide arose as a result of hydrolytic processes. At the stage of secondary cell wall formation, high activity of β-galactosidase was observed, with tissue- and stage-specific fiber β-1,4-galactan as its substrate.  相似文献   

12.
Flax (Linum usitatissimum L.) phloem fibers elongate considerably during their development and intrude between existing cells. We questioned whether fiber elongation is caused by cell tip growth or intercalary growth. Cells with tip growth are characterized by having two specific zones of cytoplasm in the cell tip, one with vesicles and no large organelles at the very tip and one with various organelles amongst others longitudinally arranged cortical microtubules in the subapex. Such zones were not observed in elongating flax fibers. Instead, organelles moved into the very tip region, and cortical microtubules showed transversal and helical configurations as known for cells growing in intercalary way. In addition, pulse-chase experiments with Calcofluor White resulted in a spotted fluorescence in the cell wall all over the length of the fiber. Therefore, it is concluded that fiber elongation is not achieved by tip growth but by intercalary growth. The intrusively growing fiber is a coenocytic cell that has no plasmodesmata, making the fibers a symplastically isolated domain within the stem. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

13.
14.
Summary Cotton fibers are often utilized as a model system to investigate cellulose biosynthesis and cell wall elongation. In this study, we grew cotton fibers in vitro, with ovules dissected at day zero post anthesis as the expiant source, in the presence of three herbicides that inhibit cellulose biosynthesis. Cultures were sampled for electron microscopy and immunocytochemistry 1–2 days after beginning the treatments. After dichlobenil treatment, the fibers were much shorter than the controls and assumed a variety of abnormal shapes, from shortened versions of the control fiber to nearly spherical. The inner layers of the fiber wall often contained juxtaposed electron-translucent and -transparent areas; this layer reacted strongly with antibodies to callose. Cellulase-gold labeling in these newly developed fibers grown in the presence of dichlobenil was present at only about 3% of the control labeling. After treatment with either isoxaben or flupoxam, the fibers assumed spherical shapes and frequently (more than 60% of fibers) exhibited a new cell plate within the fiber, indicating that cell division had occurred, a process that rarely occurred in the controls. Unlike the dichlobenil-treated fibers, fibers grown in the presence of isoxaben or flupoxam contained an extensive accumulation of chiefly deesterified pectins, replacing the entire wall with an elaborated version of the pectin sheath found in control cotton fibers. These data indicate that all three herbicides are effective disrupters of cellulose biosynthesis and cause radical changes in cell wall structure and composition. Moreover, these data indicate that the composition of the walls may influence indirectly cell cycle kinetics, keeping these fiber cells in a more meristematic mode.  相似文献   

15.
The anchorage-dependent cell line, MRC-5, was cultivated successfully on glass fibers with diameters ranging from 24 to 120 mum, despite vast differences in substrate curvature. Multilayer cell growth was observed, particularly for fiber diameters 30 mum and below, which differed from the typical monolayer growth observed in T-flask cultivations. Cells were maintainable at a reduced incubation temperature and were demonstrated to support virus replication for the 21-day antigen production period. Direct microscopic observation, along with indirect calculations, indicated that only a small fraction (about 10%) of the total available fiber surface area was occupied by cells. Thus, productivity per unit surface area was replaced by productivity per unit medium volume when evaluating fiber bed performance. Antigen and protein yields, as well as nutrient uptakes, were 1.5- to 2.5-fold greater than parallel T-flask cultures when compared on this basis. Corresponding available surface area-based values were 10- to 15-fold lower for the fiber bed reactor. The multilayer cell morphology obtained in the fiber bed was attractive for antigen production when immobilized in a column reactor system. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tridemorph, a sterol biosynthetic inhibitor. The inhibition of phytosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phytosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher concentrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, during the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cotton fiber development, and particularly in fiber elongation.  相似文献   

17.
Myogenic cell lineages.   总被引:18,自引:0,他引:18  
For many years the mechanisms by which skeletal muscles in higher vertebrates come to be composed of diverse fiber types distributed in distinctive patterns has interested cell and developmental biologists. The fiber composition of skeletal muscles varies from class to class and from muscle to muscle within the vertebrates. The developmental basis for these events is the subject of this review. Because an individual multinucleate vertebrate skeletal muscle fiber is formed by the fusion of many individual myoblasts, more attention, in recent times, has been directed toward the origins and differences among myoblasts, and more emphasis has been placed on the lineal relationship of myoblasts to fibers. This is a review of studies related to the concepts of myogenic cell lineage in higher vertebrate development with emphases on some of the most challenging problems of myogenesis including the embryonic origins of myogenic precursor cells, the mechanisms of fiber type diversity and patterning, the distinctions among myoblasts during myogenesis, and the current hypotheses of how a variety of factors, intrinsic and extrinsic to the myoblast, determine the definitive phenotype of a muscle fiber.  相似文献   

18.
The plant cell wall is a highly organized composite of many different polysaccharides, proteins and aromatic substances. These complex matrices define the shape of each individual cell, and ultimately, they are the determinants of plant morphology. The fine structures of the major angiosperm cell wall polysaccharides have been characterized, but it is not well understood how these polysaccharides are assembled into a metabolically active architecture. Cell wall biogenesis and remodeling may be partitioned into six major stages of development (precursor synthesis, polymerization, secretion, assembly, rearrangement and disassembly), and to date, a handful of mutations have been identified that affect the composition and structure in each of these stages. To greatly augment this collection, we have initiated a program to use Fourier transform infrared spectroscopy as a high through-put screen to identify a broad range of cell-wall mutants of Arabidopsis and maize. We anticipate that such mutants will be useful to probe the impact of the individual components and their metabolism on basic processes of plant growth and development. The structures of dicot and grass walls, the identification of representative cell wall mutants, and the use of a novel spectroscopic screen to identify many more cell wall mutants, are briefly reviewed.  相似文献   

19.
Cotton (Gossypium herbaceum L.) fibers elongated almost linearly up to about 20 days post anthesis. The molecular mass of xyloglucans in fiber cell walls decreased gradually during the elongation stage. When enzymatically active (native) cell wall preparations of fibers were autolyzed, the molecular mass of xyloglucans decreased. The decrease was most prominent in wall preparations obtained from the rapidly elongating fibers. The xyloglucan-degrading activity was recovered from the fiber cell walls with 3 mol/L NaCl, and the activity was high at the stages in which fibers elongated vigorously. These results suggest the possible involvement of xyloglucan metabolism in the regulation of cotton fiber elongation.  相似文献   

20.
We tested the hypothesis that the growth of multicelled cotton fibers of Gossypium hirsutum, cultivar MD51 ne, occurs exclusively within the tip cell. Direct cellular measurements proved the hypothesis incorrect. The results show that all cells within a fiber grow and that the relative growth of the tip cell is reduced as the number of cells per fiber increases. Also, measurements of two- and three-celled fibers show that the two daughter nuclei in two-celled fibers differ. The ability to divide resides primarily, if not exclusively, with the basal cell. Thus, the fate of the tip-cell nucleus is fixed while that of the base cell is not. This rule is unaltered by the presence of IAA (indoleacetic acid) and GA3 (gibberellic acid-3) in the culture medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号