首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Genomics》1995,29(3)
Genes that encode the vertebrate fibrillar collagen types I–III have previously been shown to share a highly conserved intron/exon organization, thought to reflect common ancestry and evolutionary pressures at the protein level. We report here the complete intron/exon organization ofCOL5A1,the human gene that encodes the α1 chain of fibrillar collagen type V. The structure ofCOL5A1is shown to be considerably diverged from the conserved structure of the genes for fibrillar collagen types I–III.COL5A1has 66 exons, which is greater than the number of exons found in the genes for collagen types I–III. The increased number of exons is partly due to the increased size of the pro-α1(V) N-propeptide, relative to the sizes of the N-propeptides of the types I–III procollagen molecules. In addition, however, the increased number of exons is due to differences in the intron/exon organization of the triple-helix coding region ofCOL5A1compared to the organization of the triple-helix coding regions of the genes for collagen types I–III. Of particular interest is the increase of 54 bp exons in this region ofCOL5A1,strongly supporting the proposal that the triple-helix coding regions of fibrillar collagen genes evolved from duplication of a 54 bp primordial genetic element. Moreover, comparison of the structure ofCOL5A1to the highly conserved structure of the genes of collagen types I–III provides insights into the probable structure of the ancestral gene that gave rise to what appears to be two classes of vertebrate fibrillar collagen genes.  相似文献   

3.
Eight overlapping phage clones, spanning 34.4 kilobase pairs of genomic DNA, containing the 7.2-kilobase pair rat beta-casein gene have been isolated and characterized. The first 510 base pairs (bp) of 5' flanking, 110 bp of 3' flanking, and all the exon/intron junctions have been sequenced. The beta-casein gene contains 9 exons ranging in size from 21 to 525 bp. We have attempted to identify potential regulatory elements by searching for regions of sequence homology shared between milk protein genes which respond similarly to lactogenic hormones and by searching for previously reported hormone receptor-binding sites. Within the conserved first 200 bp of 5' flanking sequences 3 regions of greater than 70% homology were observed between the rat beta- and gamma-casein genes. One of these contains a region 90% homologous to the chicken progesterone receptor-binding site. The conserved 5' noncoding region, the highly conserved signal peptide, and the hydrophobic carboxyl-terminal region of the protein are each encoded by a separate exon. In contrast the evolutionarily conserved phosphorylation site of beta-casein is formed by an RNA-splicing event. The exons which encode the phosphorylation sites of beta-casein appear to have resulted from an intragenic duplication. Based upon the exon structure of the casein genes, an evolutionary model of intragenic and intergenic exon duplications for this gene family is proposed.  相似文献   

4.
The sequences encoding the 5'-ends of three chicken fast-white myosin heavy chain (MHC) genes have been determined. When compared with the sequences of two other MHC genes it is apparent that both the exon and intron positions are conserved. All exon sequences are highly conserved; there is absolute amino acid conservation in the second and third exons. In addition, while the first and third introns diverge among the genes, the second intron is highly conserved between the five. This intron contains a 24-bp sequence that is repeated twice in one of the introns and once in the other four. Analyses indicate that this sequence, which is partially homologous to 7SL RNA, appears to be largely restricted to the MHC gene family. Analysis of the 5'-flanking sequences show that while small homologies are present between some of the genes, they have extensively diverged in this region.  相似文献   

5.
Two nonallelic porcine class I MHC (SLA) genes have been isolated and characterized. Both genes are expressed in mouse L cells, directing the synthesis of class I SLA molecules that carry common monomorphic determinants but are serologically distinct. The corresponding DNA sequences have been determined. The organization of both of these genes is similar to that of other class I genes: a leader exon, three exons encoding extracellular domains, a transmembrane exon, and three intracytoplasmic exons. The two genes are highly homologous in both exon and intron segments, with average homologies of 88% and 80%, respectively. Nucleotide changes in exon 2 are clustered, whereas those in the other exons are dispersed throughout. Comparison of the swine DNA sequences with class I genes from other species reveals a generally high conservation of exons 2, 3, 4, and 6 with lower homology in the remaining protein-encoding domains. Introns are markedly less well conserved, although moderate homology is found between swine and human class I MHC genes in both introns and 3' flanking regions. Taken together with comparisons of the deduced protein sequences, these data indicate an order of swine greater than human greater than rabbit greater than mouse in the relationship of class I genes.  相似文献   

6.
7.
From a genomic library of Xenopus laevis, two genes coding for different preprocaeruleins have been isolated and sequenced. These correspond to the type I and type III precursors analyzed previously at the cDNA level [Richter, K., Egger, R. and Kreil, G. (1986) J. Biol. Chem. 261, 3676-3680]. The type III gene comprises eight exons; the type I apparently contains eight exons as well, of which six have been sequenced. The genetic information for the dekapeptide caerulein is present on small exons of 45 base pairs. The two genes are highly homologous in their 5'-flanking region, the exon/intron boundaries, and long stretches of intron sequences. A possible scheme for the evolution of this small family of genes through exon and gene duplications is presented. In the type I gene, in place of one of the caerulein exons, a potential exon with conserved splice sites was discovered. If expressed in some frog cells, this exon would code for a new peptide 60% homologous to caerulein.  相似文献   

8.
9.
The autocatalytic group II intron ai5γ from Saccharomyces cerevisiae self-splices under high-salt conditions in vitro, but requires the assistance of the DEAD-box protein Mss116 in vivo and under near-physiological conditions in vitro. Here, we show that Mss116 influences the folding mechanism in several ways. By comparing intron precursor RNAs with long (∼300 nt) and short (∼20 nt) exons, we observe that long exon sequences are a major obstacle for self-splicing in vitro. Kinetic analysis indicates that Mss116 not only mitigates the inhibitory effects of long exons, but also assists folding of the intron core. Moreover, a mutation in conserved Motif III that impairs unwinding activity (SAT → AAA) only affects the construct with long exons, suggesting helicase unwinding during exon unfolding, but not in intron folding. Strong parallels between Mss116 and the related protein Cyt-19 from Neurospora crassa suggest that these proteins form a subclass of DEAD-box proteins that possess a versatile repertoire of diverse activities for resolving the folding problems of large RNAs.  相似文献   

10.
11.
 H oxa1 1基因是控制脊椎动物肢发育的重要基因 .根据人和鼠 H oxa1 1基因外显子 区和 区的保守序列设计了简并引物 ,采用 PCR法从热带爪蟾基因组 DNA中扩增和克隆到了H oxa1 1基因 ,并测定了核苷酸序列 .克隆的热带爪蟾 H oxa1 1基因片段长 1 598bp,由外显子 、内含子和外显子 三部分组成 ,其中外显子 60 4 bp,外显子 49bp.将该片段的核苷酸序列与人、鼠、斑马鱼 H oxa1 1基因的相应区域进行比较 ,发现该基因的内含子长度存在明显差异 .斑马鱼、热带爪蟾、鼠和人的内含子长度分别为 632 bp,945bp,1 42 1 bp和 1 41 2 bp,随动物进化阶梯的提高而变长 .外显子 区则高度保守 ,都是 49bp,外显子 区在长度上呈现约 1 0 %的变异 .将热带爪蟾 H oxa1 1基因编码的氨基酸序列与人、鼠、斑马鱼进行比较 ,它们之间分别有 67.0 %、66.5%和 46.0 %的同源性 .热带爪蟾与哺乳动物的同源性高于鱼类 ,可能反映了脊椎动物从鳍到肢的进化过程中 ,H oxa1 1基因经历了较多的变异 .  相似文献   

12.
Evolution of the fibronectin gene. Exon structure of cell attachment domain   总被引:6,自引:0,他引:6  
Genomic DNA coding for human fibronectin was identified from a human genomic library by screening with a cDNA clone that specifies the cell attachment domain in human fibronectin. Two clones which together provided more than 22 kilobase pairs of the fibronectin gene were isolated. The exons in this region correspond to approximately 40% of the coding region in the fibronectin gene. They code for the middle region of the polypeptide which consists of homologous repeating segments of about 90 amino acids called type III homologies. Nucleotide sequence of the portion of the gene corresponding to the cell attachment domain showed that the Arg-Gly-Asp-Ser cell attachment site is encoded within a 165-base pair exon. This exon, together with a 117-base pair exon codes for a homology unit. Analysis of the exon/intron organization in some of the neighboring homology units indicated a similar 2-exon structure. An exception to this pattern is that a single large exon codes for a type III homology unit that, due to alternative mRNA splicing, exists in some but not all fibronectin polypeptides. The introns separating the coding sequences for the type III homology units are located in conserved positions whereas the introns that interrupt the coding sequence within the units are in a variable position generating variations in the size of the homologous exons. This exon/intron organization suggests that the type III homology region of the fibronectin gene has evolved by a series of gene duplications of a primordial gene consisting of two exons. Specification of one of these homology units to the cell attachment domain has occurred within this exon/intron arrangement.  相似文献   

13.
The extracellular hemoglobins of cladocerans derive from the aggregation of 12 two-domain globin subunits that are apparently encoded by four genes. This study establishes that at least some of these genes occur as a tandem array in both Daphnia magna and Daphnia exilis. The genes share a uniform structure; a bridge intron separates two globin domains which each include three exons and two introns. Introns are small, averaging just 77 bp, but a longer sequence (2.2–3.2 kb) separates adjacent globin genes. A survey of structural diversity in globin genes from other daphniids revealed three independent cases of intron loss, but exon lengths were identical, excepting a 3-bp insertion in exon 5 of Simocephalus. Heterogeneity in the extent of nucleotide divergence was marked among exons, largely as a result of the pronounced diversification of the terminal exon. This variation reflected, in part, varying exposure to concerted evolution. Conversion events were frequent in exons 1–4 but were absent from exons 5 and 6. Because of this difference, the results of phylogenetic analyses were strongly affected by the sequences employed in this construction. Phylogenies based on total nucleotide divergence in exons 1–4 revealed affinities among all genes isolated from a single species, reflecting the impact of gene conversion events. In contrast, phylogenies based on total nucleotide divergence in exons 5 and 6 revealed affinities among orthologous genes from different taxa. Received: 8 March 1999 / Accepted: 14 July 1999  相似文献   

14.
15.
Invertases are responsible for the breakdown of sucrose to fructose and glucose. In all but one plant invertase gene, the second exon is only 9 nt in length and encodes three amino acids of a five-amino-acid sequence that is highly conserved in all invertases of plant origin. Sequences responsible for normal splicing (inclusion) of exon 2 have been investigated in vivo using the potato invertase, invGF gene. The upstream intron 1 is required for inclusion whereas the downstream intron 2 is not. Mutations within intron 1 have identified two sequence elements that are needed for inclusion: a putative branchpoint sequence and an adjacent U-rich region. Both are recognized plant intron splicing signals. The branchpoint sequence lies further upstream from the 3' splice site of intron 1 than is normally seen in plant introns. All dicotyledonous plant invertase genes contain this arrangement of sequence elements: a distal branchpoint sequence and adjacent, downstream U-rich region. Intron 1 sequences upstream of the branchpoint and sequences in exons 1, 2, or 3 do not determine inclusion, suggesting that intron or exon splicing enhancer elements seen in vertebrate mini-exon systems are absent. In addition, mutation of the 3' and 5' splice sites flanking the mini-exon cause skipping of the mini-exon, suggesting that both splice sites are required. The branchpoint/U-rich sequence is able to promote splicing of mini-exons of 6, 3, and 1 nt in length and of a chicken cTNT mini-exon of 6 nt. These sequence elements therefore act as a splicing enhancer and appear to function via interactions between factors bound at the branchpoint/U-rich region and at the 5' splice site of intron 2, activating removal of this intron followed by removal of intron 1. This first example of splicing of a plant mini-exon to be analyzed demonstrates that particular arrangement of standard plant intron splicing signals can drive constitutive splicing of a mini-exon.  相似文献   

16.
17.
CD5 is a member of the family of receptors which contain extracellular domains homologous to the type I macrophage scavenger receptor cysteine-rich (SRCR) domain. Here, we compare the exon/intron organization of the human CD5 gene with its mouse homologue, as well as with the human CD6 gene, the closest related member of the SRCR superfamily. The human CD5 gene spans about 24.5 kb and consists of at least 11 exons. These exons are conserved in size, number, and structure in the mouse CD5 homologue. No evidence for the biallelic polymorphism reported in the mouse could be found among a population of 100 individuals of different ethnic origins. The human CD5 gene maps to the Chromosome (Chr) 11q12.2 region, 82 kb downstream from the human CD6 gene, in a head-to-tail orientation, a situation which recalls that reported at mouse Chr 19. The exon/intron organization of the human CD5 and CD6 genes was very similar, differing in the size of intron 1 and the number of exons coding for their cytoplasmic regions. While several isoforms, resulting from alternative splicing of the cytoplasmic exons, have been reported for CD6, we only found evidence of a cytoplasmic tailless CD5 isoform. The conserved structure of the CD5 and CD6 loci, both in mouse and human genomes, supports the notion that the two genes may have evolved from duplication of a primordial gene. The existence of a gene complex for the SRCR superfamily on human Chr 11q (and mouse Chr 19) still remains to be disclosed.  相似文献   

18.
Recent studies indicate that many introns, as well as the complex spliceosomal mechanism to remove them, were present early in eukaryotic evolution. This study examines intron and exon characteristics from annotations of whole genomes to investigate the intron recognition mechanism. Exon definition uses the exon as the unit of recognition, placing length constraints on the exon but not on the intron (allowing it a greater range of lengths). In contrast, intron definition uses the intron itself as the unit of recognition and thus removes constraints on internal exon length forced by the use of an exon definition mechanism. Thus, intron and exon lengths within a genome can reflect the constraints imposed by its splicing. This study shows that it is possible firstly to recover valid intron and exon information from genome annotation. We then compare internal intron and exon information from a range of eukaryotic genomes and investigate possible evolutionary length constraints on introns and exons and how they can impact on the intron recognition mechanism. Results indicate that exon definition-based mechanisms may predominate in vertebrates although the exact system in fish is expected to show some differences with the better characterized system from mammals. We also raise the possibility that the last common ancestor of plants and animals contained some type of exon definition and that this mechanism was replaced in some genes and lineages by intron definition, possibly as a result of intron loss and/or intron shortening.  相似文献   

19.
20.
An algorithm has been developed to estimate flexibility for potential hinge motion at specified residues, that is, the mutual movement of two domains by rotation around a set of main-chain dihedral angles with torsion angles of neighboring side chains as variables. Such conformational changes must occur without severe atomic collisions. Flexible hinges have been found that satisfy such criteria. Sequence flexibility charts were obtained by plotting the flexibility of each residue against the residue number. Such charts were calculated for 10 proteins (ovomucoid third domain, cytochrome c, lysozyme, hemoglobin β-chain, α-chymotrypsin, elastase, carboxypeptidase A, dihydrofolate reductase, triosephosphate isomerase, and alcohol dehydrogenase) taken from the Protein Data Bank. The first step of unfolding is likely to occur at the hinge point with the largest flexibility. Following this idea, the polypeptide chain can be dissected into several folding units according to the sequence flexibility chart. When two domains are separated by conformational changes at such a hinge, the sequence flexibility chart for each domain changes, and it is recalculated and used to indicate subsequent unfolding steps. In this process of iterative estimation of flexibile hinges, some well-isolated hinges, or the border line between flexible and inflexible regions, were found to be directly at or close to the positions of splice junctions in the eukaryotic genes. Of a total of 45 splice junctions in the 10 proteins examined in this paper, 38 junctions can be identified as flexible hinges between folding units. We suggest that the iterative estimation of flexible hinges may define an array of possible folding/unfolding paths, and that the exon–intron arrangement in the gene may be closely correlated with the folding process of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号