首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Our understanding of the mechanisms that control gastrulation is still in its infancy. One problem is that gastrulation is a complex set of coordinated behaviours involving directional cell movements, several types of cell interactions, changes in cell fate and gene expression. Therefore, the successful analysis of its control mechanisms requires simultaneous analysis of more than one of these, or at least some way of separating them. Although progress has been slow, some recent studies have made significant advances in the field and we can probably look forward to some major breakthroughs in the near future.  相似文献   

2.
BMPs are essential regulators of cell fate during early embryonic development. Molecular genetics and in vivo imaging of cell behaviors in zebrafish now demonstrate a role for BMPs in the control of cell adhesion. The work reveals an important new mechanism governing cell movements during gastrulation.  相似文献   

3.
The PCP signaling cascade controls polarized cell behaviors in various organisms. New evidence suggests that this signaling cascade also controls the deposition of extracellular matrix during vertebrate gastrulation.  相似文献   

4.
M Tada  M L Concha 《Current biology : CB》2001,11(12):R470-R472
A recent study reveals that the propagation of intercellular calcium signals is closely associated with the generation of convergent extension movements during Xenopus gastrulation. Such signals provide a mechanism whereby large populations of cells can communicate to generate orchestrated cell movements.  相似文献   

5.
6.
7.
8.
Dorsoventral patterning depends on the local concentrations of the morphogens. Twisted gastrulation (TSG) regulates the extracellular availability of a mesoderm inducer, bone morphogenetic protein 4 (BMP-4). However, TSG function in vivo is still unclear. We isolated a TSG cDNA as a secreted molecule from the mouse aorta-gonad-mesonephros region. Here we show that TSG-deficient mice were born healthy, but more than half of the neonatal pups showed severe growth retardation shortly after birth and displayed dwarfism with delayed endochondral ossification and lymphopenia, followed by death within a month. TSG-deficient thymus was atrophic, and phosphorylation of SMAD1 was augmented in the thymocytes, suggesting enhanced BMP-4 signaling in the thymus. Since BMP-4 promotes skeletogenesis and inhibits thymus development, our findings suggest that TSG acts as both a BMP-4 agonist in skeletogenesis and a BMP-4 antagonist in T-cell development. Although lymphopenia in TSG-deficient mice would partly be ascribed to systemic effects of runtiness and wasting, our findings may also provide a clue for understanding the pathogenesis of human dwarfism with combined immunodeficiency.  相似文献   

9.
Plasmodium falciparum is unique among the human malarias in displaying the phenomenon of sequestration, in which mature infected erythrocytes adhere to post-capillary and capillary venular endothelium. In this review, Tony Berendt, David Ferguson and Chris Newbold describe the molecular and cellular biology of sequestration and cytoadherence. Potential host receptors identified to date that are expressed on endothelial cells (CD36, thrombospondin and ICAM-1) and the parasite-mediated changes in the infected erythrocyte (knob formation, senescence and the expression of parasite-derived neoantigens) are considered as well as the relevance of sequestration as a virulence factor in human disease and its potential role in parasite biology.  相似文献   

10.
11.
The vertebrate neural plate contains distinct domains of gene expression, prefiguring the future brain areas. In this study, we draw an extended expression map of the rostral neural plate that reveals discrete domains inside the presumptive posterior forebrain. We show, by fate mapping, that these well-defined cell populations will develop into specific diencephalic regions. To address whether these early subterritories are already committed to restricted identities, we began to analyse the consequences of ablation and transplantation of these specific cell populations. We found that precursors of the prethalamus are already specified and irreplaceable at late gastrula stage, because ablation of these cells results in loss of prethalamic markers. Moreover, when transplanted into the ectopic environment of the presumptive hindbrain, these cells still pursue their prethalamic differentiation program. Finally, transplantation of these precursors, in the rostral-most neural epithelium, induces changes in cell identity in the surrounding host forebrain. This cell–non-autonomous property led us to propose that these committed prethalamic precursors may play an instructive role in the regionalization of the developing diencephalon.  相似文献   

12.
In Xenopus gastrulation, the involuting mesodermal and non-involuting ectodermal cells remain separated from each other, undergoing convergent extension. Here, we show that Eph–ephrin signaling is crucial for the tissue separation and convergence during gastrulation. The loss of EphA4 function results in aberrant gastrulation movements, which are due to selective inhibition of tissue constriction and separation. At the cellular levels, knockdown of EphA4 impairs polarization and migratory activity of gastrulating cells but not specification of their fates. Importantly, rescue experiments demonstrate that EphA4 controls tissue separation via RhoA GTPase in parallel to Fz7 and PAPC signaling. In addition, we show that EphA4 and its putative ligand, ephrin-A1 are expressed in a complementary manner in the involuting mesodermal and non-involuting ectodermal layers of early gastrulae, respectively. Depletion of ephrin-A1 also abrogates tissue separation behaviors. Therefore, these results suggest that Eph receptor and its ephrin ligand might mediate repulsive interaction for tissue separation and convergence during early Xenopus gastrulation movements.  相似文献   

13.
14.
Polypyrimidine-tract binding protein 1 (PTBP1) is an important cellular regulator of messenger RNAs influencing the alternative splicing profile of a cell as well as its mRNA stability, location and translation. In addition, it is diverted by some viruses to facilitate their replication. Here, we used a novel PTBP1 knockout mouse to analyse the tissue expression pattern of PTBP1 as well as the effect of its complete removal during development. We found evidence of strong PTBP1 expression in embryonic stem cells and throughout embryonic development, especially in the developing brain and spinal cord, the olfactory and auditory systems, the heart, the liver, the kidney, the brown fat and cartilage primordia. This widespread distribution points towards a role of PTBP1 during embryonic development. Homozygous offspring, identified by PCR and immunofluorescence, were able to implant but were arrested or retarded in growth. At day 7.5 of embryonic development (E7.5) the null mutants were about 5x smaller than the control littermates and the gap in body size widened with time. At mid-gestation, all homozygous embryos were resorbed/degraded. No homozygous mice were genotyped at E12 and the age of weaning. Embryos lacking PTBP1 did not display differentiation into the 3 germ layers and cavitation of the epiblast, which are hallmarks of gastrulation. In addition, homozygous mutants displayed malformed ectoplacental cones and yolk sacs, both early supportive structure of the embryo proper. We conclude that PTBP1 is not required for the earliest isovolumetric divisions and differentiation steps of the zygote up to the formation of the blastocyst. However, further post-implantation development requires PTBP1 and stalls in homozygous null animals with a phenotype of dramatically reduced size and aberration in embryonic and extra-embryonic structures.  相似文献   

15.
E-cadherin is a member of the classical cadherin family and is known to be involved in cell-cell adhesion and the adhesion-dependent morphogenesis of various tissues. We isolated a zebrafish mutant (cdh1(rk3)) that has a mutation in the e-cadherin/cdh1 gene. The mutation rk3 is a hypomorphic allele, and the homozygous mutant embryos displayed variable phenotypes in gastrulation and tissue morphogenesis. The most severely affected embryos displayed epiboly delay, decreased convergence and extension movements, and the dissociation of cells from the embryos, resulting in early embryonic lethality. The less severely affected embryos survived through the pharyngula stage and showed flattened anterior neural tissue, abnormal positioning and morphology of the hatching gland, scattered trigeminal ganglia, and aberrant axon bundles from the trigeminal ganglia. Maternal-zygotic cdh1(rk3) embryos displayed epiboly arrest during gastrulation, in which the enveloping layer (EVL) and the yolk syncytial layer but not the deep cells (DC) completed epiboly. A similar phenotype was observed in embryos that received antisense morpholino oligonucleotides (cdh1MO) against E-cadherin, and in zebrafish epiboly mutants. Complementation analysis with the zebrafish epiboly mutant weg suggested that cdh1(rk3) is allelic to half baked/weg. Immunohistochemistry with an anti-beta-catenin antibody and electron microscopy revealed that adhesion between the DCs and the EVL was mostly disrupted but the adhesion between DCs was relatively unaffected in the MZcdh1(rk3) mutant and cdh1 morphant embryos. These data suggest that E-cadherin-mediated cell adhesion between the DC and EVL plays a role in the epiboly movement in zebrafish.  相似文献   

16.
17.
Much discussion has recently centred around the biochemical mechanisms by which ceramide is produced in signalling pathways. Since ceramide is virtually insoluble in aqueous solutions, the biological effects of ceramide should be considered in the context of its generation within the membrane lipid bilayer. To this end, we now summarize recent data describing some biophysical properties of ceramide that are of relevance for understanding the mode of ceramide action as a second messenger, and, as a consequence, how the site(s) of ceramide generation might impact upon its role in signalling.  相似文献   

18.
Mammalian Argonaute proteins (EIF2C1-4) play an essential role in RNA-induced silencing. Here, we show that the loss of eIF2C2 (Argonaute2 or Ago2) results in gastrulation arrest, ectopic expression of Brachyury (T), and mesoderm expansion. We identify a genetic interaction between Ago2 and T, as Ago2 haploinsufficiency partially rescues the classic T/+ short-tail phenotype. Finally, we demonstrate that the ectopic T expression and concomitant mesoderm expansion result from disrupted fibroblast growth factor signaling, likely due to aberrant expression of Eomesodermin. Together, these data indicate that a factor best known as a key component of the RNA-induced silencing complex is required for proper fibroblast growth factor signaling during gastrulation, suggesting a possible micro-RNA function in the formation of a mammalian germ layer.  相似文献   

19.
In the developing vertebrate embryo, proper dorsal-ventral patterning relies on BMP antagonists secreted by the organizer during gastrulation. The BMP antagonist chordin has a complex interaction with BMPs that is governed in part by its interaction with the secreted protein twisted gastrulation (tsg). In different contexts, tsg has activity as either a BMP agonist or as a BMP antagonist. Using morpholino oligonucleotides in Xenopus tropicalis, we show that reducing tsg gene product results in a ventralized embryo, and that tsg morphants specifically lack a forebrain. We provide new evidence that tsg acts as a BMP antagonist during X. tropicalis gastrulation since the tsg depletion phenotype can be rescued in two ways: by chordin overexpression and by BMP depletion. We conclude that tsg acts as a BMP antagonist in the context of the frog gastrula, and that it acts cooperatively with chordin to establish dorsal structures and particularly forebrain tissue during development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号