首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hu D  Chung AL  Wu LP  Zhang X  Wu Q  Chen JC  Chen GQ 《Biomacromolecules》2011,12(9):3166-3173
Polyhydroxyalkanoates (PHA) synthesis genes phbC and orfZ cloned from Ralstonia eutropha H16 were transformed into beta-oxidation weakened Pseudomonas putida KTOY08ΔGC, a mutant of P. putida KT2442. The recombinant P. putida strain termed KTHH06 was able to produce a short-chain-length PHA block copolymer consisting of poly(3-hydroxybutyrate) (P3HB) as one block and poly(4-hydroxybutyrate) (P4HB) as another block. One-dimensional and two-dimensional nuclear magnetic resonance (NMR) clearly indicated the polymer was a diblock copolymer consisting of 20 mol % P3HB as one block and 80 mol % P4HB as another one. Differential scanning calorimetric (DSC) showed that P3HB block melting temperatures (T(m)) in the block copolymer P3HB-b-P4HB was shift to low temperature compared with homopolymer P3HB and a blend of P3HB and P4HB. The block copolymer with a number average molecular weight of 50000 Da and a polydispersity of 3.1 demonstrated a better yield and tensile strength compared with that of its related random copolymer and blend of homopolymers of P3HB and P4HB.  相似文献   

2.
Pseudomonas putida KT2442 produces medium-chain-length polyhydroxyalkanoates consisting of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), 3-hydroxydodecanoate (3HDD) and 3-hydroxytetradecanoate (3HTD) from relevant fatty acids. P. puitda KT2442 was found to contain key fatty acid degradation enzymes encoded by genes PP2136, PP2137 (fadB and fadA) and PP2214, PP2215 (fadB2x and fadAx), respectively. In this study, the above enzymes and other important fatty acid degradation enzymes, including 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA dehydrogenase encoded by genes PP2047 and PP2048, respectively, were studied for their effects on PHA structures. Mutant P. puitda KTQQ20 was constructed by knocking out the above six genes and also 3-hydroxyacyl-CoA-acyl carrier protein transferase encoded by PhaG, leading to a significant reduction of fatty acid β-oxidation activity. Therefore, P. puitda KTQQ20 synthesized homopolymer poly-3-hydroxydecanoate (PHD) or P(3HD-co-84mol% 3HDD), when grown on decanoic acid or dodecanoic acid. Melting temperatures of PHD and P(3HD-co-84mol% 3HDD) were 72 and 78 °C, respectively. Thermal and mechanical properties of PHD and P(3HD-co-84mol% 3HDD) were much better as compared with an mcl-PHA, consisting of lower content of C10 or C12 monomers. For the first time, it was shown that homopolymer PHD and 3HDD monomers dominating PHA could be synthesized by β-oxidation inhibiting P. putida grown on relevant carbon sources.  相似文献   

3.
Toluene dioxygenase (TDO) catalyzes asymmetric cis-dihydroxylations of aromatic compounds. Pseudomonas putida KT2442 (pSPM01) harboring TDO genes could effectively biotransform a wide-range of aromatic substrates into their cis-diols products. In shake-flask culture, approximately 2.7gl(-1) benzene cis-diols, 8.8gl(-1) toluene cis-diols and 6.0gl(-1) chlorobenzene cis-diols were obtained from the biotransformation process. Furthermore, vgb gene encoding Vitreoscilla hemoglobin protein (VHb) which enhances oxygen microbial utilization rate under low dissolved oxygen concentration was integrated into P. putida KT2442 genome. The oxidation ability of the mutant strain P. putida KTOY02 (pSPM01) harboring TDO gene was increased in the presence of VHb protein. As a result, approximately 3.8, 15.1 or 6.8gl(-1) different cis-diols production was achieved in P. putida KTOY02 (pSPM01) grown in shake-flasks when benzene, toluene or chlorobenzene was used as the substrate. The above results indicate that P. putida KT2442 could be used as a cell factory to biotransform aromatic compounds.  相似文献   

4.
Chung AL  Jin HL  Huang LJ  Ye HM  Chen JC  Wu Q  Chen GQ 《Biomacromolecules》2011,12(10):3559-3566
A medium-chain-length (MCL) polyhydroxyalkanoates (PHAs) producer Pseudomonas entomophila L48 was investigated for microbial production of 3-hydroxydodecanote homopolymer. Pseudomonas entomophila L48 was found to produce MCL PHA consisting of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO), 3-hydroxydecanoate (3HD), and 3-hydroxydodecanoate (3HDD) from related carbon sources fatty acids. In this study, some of the genes encoding key enzymes in β-oxidation cycle of P. entomophila such as 3-hydroxyacyl-CoA dehydrogenase, 3-ketoacyl-CoA thiolase, and acetyl-CoA acetyltransferase were deleted to study the relationship between β-oxidation and PHA synthesis in P. entomophila. Among the mutants constructed, P. entomophila LAC26 accumulated over 90 wt % PHA consisting of 99 mol % 3HDD. A fed-batch fermentation process carried out in a 6 L automatic fermentor produced 7.3 g L(-1) PHA consisting of over 97 mol % 3HDD fraction. Properties of MCL PHA were significantly improved along with increasing 3HDD contents. P(2.1 mol % 3HD-co-97.9 mol % 3HDD) produced by P. entomophila LAC25 had the widest temperature range between T(g) and T(m), which were -49.3 and 82.4 °C, respectively, in all MCL PHA reported so far. The new type of PHA also represented high crystallinity caused by side-chain crystallization compared with short side chain PHA. For the first time, P(3HDD) homopolymers were obtained.  相似文献   

5.
Polyhydroxyalkanoates (PHAs) are biodegradable polymers produced by a wide range of bacteria, including Pseudomonads. These polymers are accumulated in the cytoplasm as carbon and energy storage materials when culture conditions are unbalanced and hence, they have been classically considered to act as sinks for carbon and reducing equivalents when nutrients are limited. Bacteria facing carbon excess and nutrient limitation store the extra carbon as PHAs through the PHA polymerase (PhaC). Thereafter, under starvation conditions, PHA depolymerase (PhaZ) degrades PHA and releases R -hydroxyalkanoic acids, which can be used as carbon and energy sources. To study the influence of a deficient PHA metabolism in the growth of Pseudomonas putida KT2442 we have constructed two mutant strains defective in PHA polymerase ( phaC1 )- and PHA depolymerase ( phaZ )-coding genes respectively. By using these mutants we have demonstrated that PHAs play a fundamental role in balancing the stored carbon/biomass/number of cells as function of carbon availability, suggesting that PHA metabolism allows P. putida to adapt the carbon flux of hydroxyacyl-CoAs to cellular demand. Furthermore, we have established that the coordination of PHA synthesis and mobilization pathways configures a functional PHA turnover cycle in P. putida KT2442. Finally, a new strain able to secrete enantiomerically pure R -hydroxyalkanoic acids to the culture medium during cell growth has been engineering by redirecting the PHA cycle to biopolymer hydrolysis.  相似文献   

6.
Monomers of microbial polyhydroxyalkanoates, mainly 3-hydroxyhexanoic acid (3HHx) and 3-hydroxyoctanoic acid (3HO), were produced by overexpressing polyhydroxyalkanoates depolymerase gene phaZ, together with putative long-chain fatty acid transport protein fadL of Pseudomonas putida KT2442 and acyl-CoA synthetase (fadD) of Escherichia coli MG1655 in P. putida KT2442. FadL(Pp), which is responsible for free fatty acid transportation from the extracellular environment to the cytoplasm, and FadD(Ec), which activates fatty acid to acyl-CoA, jointly reinforce the fatty acid beta-oxidation pathway. Pseudomonas putida KT2442 (pYZPst01) harboring polyhydroxyalkanoates depolymerase gene phaZ of Pseudomonas stutzeri 1317 produced 1.37 g L(-1) extracellular 3HHx and 3HO in shake flask studies after 48 h in the presence of sodium octanoate as a sole carbon source, while P. putida KT2442 (pYZPst06) harboring phaZ(Pst), fadD(Ec) and fadL(Pp) achieved 2.32 g L(-1) extracellular 3HHx and 3HO monomer production under the same conditions. In a 48-h fed-batch fermentation process conducted in a 6-L fermentor with 3 L sodium octanoate mineral medium, 5.8 g L(-1) extracellular 3HHx and 3HO were obtained in the fermentation broth. This is the first time that medium-chain-length 3-hydroxyalkanoic acids (mcl-3HA) were produced using fadL(Pp) and fadD(Ec) genes combined with the polyhydroxyalkanoates depolymerase gene phaZ.  相似文献   

7.
Pseudomonas putida KT2442 produces medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acids. When gene encoding 3-hydroxyacyl-CoA dehydrogenase which catalyzes long-chain-3-hydroxyacyl-CoA to 3-ketoacyl-CoA, was partially or completely deleted in P. putida KTOY08, the PHA accumulated was shown to contain only two different monomer structures dominated by a monomer of the same chain length as that of the fatty acids fed and another monomer two carbon atoms shorter. Among the PHA copolymers, P(44% 3HD-co-3HDD) containing 44% 3HD and 56% 3HDD was demonstrated to have a melting temperature Tm, an apparent heat of fusion △Hm and a Young’s modulus E of 75 °C, 51 J g?1 and 2.0 MPa, respectively, the highest among all the MCL PHA studied.  相似文献   

8.
Medium-chain-length polyhydroxyalkanoates (mcl-PHA) consisting of 3-hydroxyhexanoate (HHx), 3-hydroxyoctanoate (HO), 3-hydroxydecanoate, 3-hydroxydodecanoate, and high-content 3-hydroxytetradecanoate (HTD) was produced by knockout mutant Pseudomonas putida KT2442 termed P. putida KTOY06. When grown on 6 to14 g/L single-carbon-source tetradecanoic acid, P. putida KTOY06, which β-oxidation pathway was weakened by deleting genes of 3-ketoacyl-coenzyme A (CoA) thiolase (fadA) and 3-hydroxyacyl-CoA dehydrogenase (fadB), for the first time, produced several mcl-PHA including 31 to 49 mol% HTD as a major monomer. HHx contents in these mcl-PHAs remained approximately constant at less than 3 mol%. In addition, large amounts of oligo-HTD were detected in cells, indicating the limited ability of P. putida KTOY06 in polymerizing long-chain-length 3-hydroxyalkanoates. The mcl-PHA containing high HTD monomer contents was found to have both higher crystallinity and improved tensile strength compared with that of typical mcl-PHA.  相似文献   

9.
Pseudomonas putida KT2442 commonly produces medium-chain-length polyhydroxyalkanoates (PHA) consisting of 3-hydroxyhexanoate (C6) to 3-hydroxydodecanoate (C12) when grown in glucose or even number fatty acid. When two of the beta-oxidation genes fadBA were deleted, the P. pudida KT2442 mutant named KTOY06 accumulated a homopolymer of poly-3-hydroxyheptanoate (P3HHp) up to 71 wt% of its cell dry weight in the presence of heptanoate as a single carbon source. P3HHp contents in the cell dry weight were in direct proportional to Na-heptanoate concentration up to 10 g/L. In contrast, under the same cultivation conditions, the wild type P. putida KT2442 produced a copolymer consisting of 3-hydroxyheptanoate (3HHp) and 5.3–8.4 mol% 3-hydroxynonanoate (3HN). Gas chromatography (GC), nuclear magnetic resonance (NMR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC) were used to characterize the homopolymer P3HHp, respectively. It was found that the P3HHp with an average molecular weight of 455 kDa was a completely amorphous homopolymer without crystallinity. P3HHp is thermo-degradable at around 250 °C.  相似文献   

10.
To produce extracellular chiral 3-hydroxyacyl acids (3HA) by fermentation, a novel pathway was constructed by expressing tesB gene encoding thioesterase II into Pseudomonas putida KTOY01, which was a polyhydroxyalkanoate (PHA) synthesis operon knockout mutant. 3HA mixtures of 0.35 g/l consisting of 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate (3HDD) were produced in shake-flask study using dodecanoate as a sole carbon source. Additional knockout of fadB and fadA genes encoding 3-ketoacyl-CoA thiolase and 3-hydroxyacyl-CoA dehydrogenase in P. putida KTOY01 led to the weakening of the β-oxidation pathway. The fadBA and PHA synthesis operon knockout mutant P. putida KTOY07 expressing tesB gene produced 2.44 g/l 3HA, significantly more than that of the β-oxidation intact mutant. The 3HA mixture contained 90 mol% 3HDD as a dominant component. A fed-batch fermentation process carried out in a 6-l automatic fermentor produced 7.27 g/l extracellular 3HA containing 96 mol% fraction of 3HDD after 28 h of growth. For the first time, it became possible to produce 3HDD-dominant 3HA monomers. Ahleum Chung and Qian Liu contributed equally to this paper.  相似文献   

11.
Here, we report the use of petrochemical aromatic hydrocarbons as a feedstock for the biotechnological conversion into valuable biodegradable plastic polymers-polyhydroxyalkanoates (PHAs). We assessed the ability of the known Pseudomonas putida species that are able to utilize benzene, toluene, ethylbenzene, p-xylene (BTEX) compounds as a sole carbon and energy source for their ability to produce PHA from the single substrates. P. putida F1 is able to accumulate medium-chain-length (mcl) PHA when supplied with toluene, benzene, or ethylbenzene. P. putida mt-2 accumulates mcl-PHA when supplied with toluene or p-xylene. The highest level of PHA accumulated by cultures in shake flask was 26% cell dry weight for P. putida mt-2 supplied with p-xylene. A synthetic mixture of benzene, toluene, ethylbenzene, p-xylene, and styrene (BTEXS) which mimics the aromatic fraction of mixed plastic pyrolysis oil was supplied to a defined mixed culture of P. putida F1, mt-2, and CA-3 in the shake flasks and fermentation experiments. PHA was accumulated to 24% and to 36% of the cell dry weight of the shake flask and fermentation grown cultures respectively. In addition a three-fold higher cell density was achieved with the mixed culture grown in the bioreactor compared to shake flask experiments. A run in the 5-l fermentor resulted in the utilization of 59.6 g (67.5 ml) of the BTEXS mixture and the production of 6 g of mcl-PHA. The monomer composition of PHA accumulated by the mixed culture was the same as that accumulated by single strains supplied with single substrates with 3-hydroxydecanoic acid occurring as the predominant monomer. The purified polymer was partially crystalline with an average molecular weight of 86.9 kDa. It has a thermal degradation temperature of 350 degrees C and a glass transition temperature of -48.5 degrees C.  相似文献   

12.
Medium-chain-length (mcl) poly(3-hydroxyalkanoates) (PHAs) are storage polymers that are produced from various substrates and accumulate in Pseudomonas strains belonging to rRNA homology group I. In experiments aimed at increasing PHA production in Pseudomonas strains, we generated an mcl PHA-overproducing mutant of Pseudomonas putida KT2442 by transposon mutagenesis, in which the aceA gene was knocked out. This mutation inactivated the glyoxylate shunt and reduced the in vitro activity of isocitrate dehydrogenase, a rate-limiting enzyme of the citric acid cycle. The genotype of the mutant was confirmed by DNA sequencing, and the phenotype was confirmed by biochemical experiments. The aceA mutant was not able to grow on acetate as a sole carbon source due to disruption of the glyoxylate bypass and exhibited two- to fivefold lower isocitrate dehydrogenase activity than the wild type. During growth on gluconate, the difference between the mean PHA accumulation in the mutant and the mean PHA accumulation in the wild-type strain was 52%, which resulted in a significant increase in the amount of mcl PHA at the end of the exponential phase in the mutant P. putida KT217. On the basis of a stoichiometric flux analysis we predicted that knockout of the glyoxylate pathway in addition to reduced flux through isocitrate dehydrogenase should lead to increased flux into the fatty acid synthesis pathway. Therefore, enhanced carbon flow towards the fatty acid synthesis pathway increased the amount of mcl PHA that could be accumulated by the mutant.  相似文献   

13.
A functional antibody highly specific for polymerase C1 of Pseudomonas oleovorans GPo1 was raised and used to determine polymerase C1 levels in in vivo experiments. The polymerase C1 antibodies did not show a cross-reaction with polymerase C2 of P. oleovorans. In wild-type P. oleovorans GPo1 and Pseudomonas putida KT2442, amounts of 0.075 and 0.06% polymerase relative to total protein, respectively, were found. P. oleovorans GPo1(pGEc405), which contained additional copies of the polymerase C1-encoding gene under the control of its native promoter, contained 0.5% polymerase C1 relative to total protein. Polymerase C1 reached 10% of total cell protein when the polymerase C1-encoding gene was overexpressed through the P(alk) promoter in P. oleovorans GPo1(pET702, pGEc74). Amounts of poly(R-3-hydroxyalkanoate) (PHA) increased significantly under non-nitrogen-limiting conditions when additional polymerase C1 was expressed in P. oleovorans. Whereas P. oleovorans produced 34% (wt/wt) PHA under these conditions, a PHA level of 64% (wt/wt) could be reached for P. oleovorans GPo1(pGEc405) and a PHA level of 52% (wt/wt) could be reached for P. oleovorans GPo1(pET702, pGEc74) after induction, compared to a PHA level of 13% for the uninduced control. All recombinant Pseudomonas strains containing additional polymerase C1 showed small changes in their PHA composition. Larger amounts of 3-hydroxyhexanoate monomer and smaller amounts of 3-hydroxyoctanoate and -decanoate were found compared to those of the wild type. Two different methods were developed to quantify rates of incorporation of new monomers into preexisting PHA granules. P. oleovorans GPo1 cells grown under nitrogen-limiting conditions showed growth stage-dependent incorporation rates. The highest PHA synthesis rates of 9.5 nmol of C8/C6 monomers/mg of cell dry weight (CDW)/min were found during the mid-stationary phase, which equals a rate of production of 80 g of PHA/kg of CDW/h.  相似文献   

14.
Polyhydroxyalkanoate (PHA) synthesis genes phaPCJ Ac cloned from Aeromonas caviae were transformed into Pseudomonas putida KTOY06ΔC, a mutant of P. putida KT2442, resulting in the ability of the recombinant P. putida KTOY06ΔC (phaPCJ A.c ) to produce a short-chain-length and medium-chain-length PHA block copolymer consisting of poly-3-hydroxybutyrate (PHB) as one block and random copolymer of 3-hydroxyvalerate (3HV) and 3-hydroxyheptanoate (3HHp) as another block. The novel block polymer was studied by differential scanning calorimetry (DSC), nuclear magnetic resonance, and rheology measurements. DSC studies showed the polymer to possess two glass transition temperatures (T g), one melting temperature (T m) and one cool crystallization temperature (T c). Rheology studies clearly indicated a polymer chain re-arrangement in the copolymer; these studies confirmed the polymer to be a block copolymer, with over 70 mol% homopolymer (PHB) of 3-hydroxybutyrate (3HB) as one block and around 30 mol% random copolymers of 3HV and 3HHp as the second block. The block copolymer was shown to have the highest tensile strength and Young’s modulus compared with a random copolymer with similar ratio and a blend of homopolymers PHB and PHVHHp with similar ratio. Compared with other commercially available PHA including PHB, PHBV, PHBHHx, and P3HB4HB, the short-chain- and medium-chain-length block copolymer PHB-b-PHVHHp showed differences in terms of mechanical properties and should draw more attentions from the PHA research community.  相似文献   

15.
We developed a new cell surface display system in Pseudomonas putida KT2442 using OprF, an outer membrane protein of Pseudomonas aeruginosa, as an anchoring motif in a C-terminal deletion-fusion strategy. The Pseudomonas fluorescens SIK W1 lipase gene was fused to two different C-terminal truncated OprF genes, and the fusion genes were cloned into the broad-host-range plasmid pBBR1MCS2 to make pMO164PL and pMO188PL. Plasmid pMO188PL allowed better display of lipase and thus was chosen for further study. The display of lipase on the surface of P. putida KT2442 was confirmed by Western blot analysis, immunofluorescence microscopy, and measurement of whole-cell lipase activity. The whole-cell lipase activity of recombinant P. putida KT2442 harboring pMO188PL was more than fivefold higher than that of recombinant Escherichia coli displaying lipase in the same manner. Cell surface-displayed lipase exhibited the highest activity at 47 degrees C and pH 9.0, and the whole-cell lipase activity was greater than 90% of the initial activity in organic solvents at 47 degrees C for 1 week. In a biocatalytic application, enantioselective resolution of 1-phenyl ethanol was carried out in an organic solvent. (R)-Phenyl ethyl acetate was successfully produced with 41.9% conversion and an enantiomeric excess of more than 99% in a 36-h reaction. These results suggest that the OprF anchor can be used for efficient display of proteins in P. putida KT2442 and consequently for various biocatalytic applications.  相似文献   

16.
Pseudomonas putida KT2442 was engineered to use the organophosphate pesticide parathion, a compound similar to other organophosphate pesticides and chemical warfare agents, as a source of carbon and energy. The initial step in the engineered degradation pathway was parathion hydrolysis by organophosphate hydrolase (OPH) to p-nitrophenol (PNP) and diethyl thiophosphate, compounds that cannot be metabolized by P. putida KT2442. The gene encoding the native OPH (opd), with and without the secretory leader sequence, was cloned into broad-host-range plasmids under the control of tac and taclac promoters. Expression of opd from the tac promoter resulted in high OPH activity, whereas expression from the taclac promoter resulted in low activity. A plasmid-harboring operons encoding enzymes for p-nitrophenol transformation to beta-ketoadipate was transformed into P. putida allowing the organism to use 0.5 mM PNP as a carbon and energy source. Transformation of P. putida with the plasmids harboring opd and the PNP operons allowed the organism to utilize 0.8 mM parathion as a source of carbon and energy. Degradation studies showed that parathion formed a separate dense, non-aqueous phase liquid phase but was still bioavailable.  相似文献   

17.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   

18.
A method was developed to increase the yield of MCL-PHA from nonanoic acid in the PHA accumulation phase. Pseudomonas putida KT2440 was grown on glucose until ammonium-limitation was imposed. In the second (accumulation) stage, either glucose, nonanoic acid, or a mixture of these carbon and energy sources was supplied. Since the medium-chain-length poly-3-hydroxyalkanoate (MCL-PHA) subunits produced are unique for each carbon source, their relative contribution to PHA yield could be calculated. Y(C7+C9)/NA was 0.254 mol mol(-1) during PHA synthesis from nonanoic acid. Y(C8+C10)/G was only 0.057 mol mol(-1) during PHA synthesis from glucose. When nonanoic acid and glucose were fed together, Y(C7+C8)/NA almost doubled to 0.450 mol mol(-1) while Y(C8+C10)/G decreased to 0.011 mol mol(-1). These results demonstrate that substantial savings can be obtained by feeding glucose with substrates that are good for PHA production but much more expensive than glucose.  相似文献   

19.
The biosynthesis of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas putida KT2442 during growth on carbohydrates was studied. PHAs isolated from P. putida cultivated on glucose, fructose, and glycerol were found to have a very similar monomer composition. In addition to the major constituent 3-hydroxydecanoate, six other monomers were found to be present: 3-hydroxyhexanoate, 3-hydroxyoctanoate, 3-hydroxydodecanoate, 3-hydroxydodecenoate, 3-hydroxytetradecanoate, and 3-hydroxytetradecenoate. The identity of all seven 3-hydroxy fatty acids was established by gas chromatography-mass spectrometry, one-dimensional 1H-nuclear magnetic resonance, and two-dimensional double-quantum filtered correlation spectroscopy 1H-nuclear magnetic resonance. The chemical structures of the monomer units are identical to the structure of the acyl moiety of the 3-hydroxyacyl-acyl carrier protein intermediates of de novo fatty acid biosynthesis. Furthermore, the degree of unsaturation of PHA and membrane lipids is similarly influenced by shifts in the cultivation temperature. These results strongly indicate that, during growth on nonrelated substrates, PHA monomers are derived from intermediates of de novo fatty acid biosynthesis. Analysis of a P. putida pha mutant and complementation of this mutant with the cloned pha locus revealed that the PHA polymerase genes necessary for PHA synthesis from octanoate are also responsible for PHA formation from glucose.  相似文献   

20.
 The synthesis of poly(3-hydroxyalkanoates) (PHA) by Pseudomonas putida KT2442 growing on long-chain fatty acids was studied in continuous cultures. The effects of the growth rate on the biomass and polymer concentration were determined and it was found that the PHA concentrations decreased with increasing growth rates. The highest volumetric productivity was 0.13 g PHA l-1 h-1 at a specific growth rate (μ) of 0.1 h-1. The molecular mass of the polymer remained constant at all growth rates but changes in the monomeric composition of the PHA synthesized were observed. Variation of the carbon to nitrogen (C/N) ratio of the substrate feed at μ=0.1 h-1 revealed optimal PHA formation at C/N=20 mol/mol. In order to optimize PHA production P. putida KT2442 was cultivated to high cell densities in oxygen-limited continuous cultures. In this way a maximum biomass concentration of 30 g/l containing approximately 23% PHA was achieved. This corresponds to a volumetric productivity of 0.69 g  l-1 h-1. Received: 14 December 1995 / Received revision: 18 April 1996 / Accepted: 22 April 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号